
The Liquid Democracy Journal

The Liquid Democracy Journal is dedicated to the idea ofLiquid Democracy,

which is a democratic principle that uses transitive delegations to unite the

best ofdirect and representative democracy.

But this journal is not just limited to Liquid Democracy; it also covers those

topics coming up when implementing it: electron ic parti cati pation,

collective moderation, and voting systems.

on electronic participation,

collective moderation, and

voting systems

Issue 4

Berlin, 201 5-07-28



The Liquid Democracy Journal

on electronic participation, collective moderation, and voting systems

Issue 4, Berlin 2015-07-28 (electronic version 2015-12-14, rev2 2017-05-10)

Copyright © 2015 Interaktive Demokratie e. V.

Johannisstraße 12

10117 Berlin

Germany

http://www.interaktive-demokratie.org/

All rights reserved.

Published by: Interaktive Demokratie e. V., Berlin, Germany

Edited by: Jan Behrens

Axel Kistner

Andreas Nitsche

Björn Swierczek

Contact editors at: editors@liquid-democracy-journal.org

For unsolicited sent-in works neither the editors nor

the publisher take any responsibility.

Subscribe at: http://www.liquid-democracy-journal.org/

Archive available at: http://www.liquid-democracy-journal.org/

ISSN-L: 2198–9532

ISSN print version: 2198–9532

ISSN electronic version: 2199–1758



3The Liquid Democracy Journalissue 4

It has been almost six  years since we published

the first version of LiquidFeedback in the au-

tumn of 2009. Since then, we've constantly

been improving the software in regards to the

user experience as well as considerations re-

garding the democratic process implemented

by the software.

LiquidFeedback is not only an implementation

ofLiquid Democracy (the idea of transitive, re-

vocable delegations by topic) but also features

a unique proposition development system

where huge groups of people may discuss and

decide in a self-organized way. It has always

been the goal to abstain from the need for a

moderator or request commission, and Liquid-

Feedback has been successfully reaching that

goal in real world scenarios with up to several

thousand participants.

With this Issue  4, we want to go further: we

will present an approach to make the Liquid-

Feedback proposition development and de-

cision making process feasible for a poten-

tially unlimited number of participants. The

article “A Finite Discourse Space for an Infinite

Number ofParticipants” is the missing piece of

the puzzle to create a process that scales – in

theory – for an infinitely high number ofpeople.

But we will also present new application fields

of the LiquidFeedback process. Björn Swierczek

will present not only theoretical considerations

but also an implementation to connect Liquid-

Feedback with revision control systems.

Considering the widespread use of revision

control systems in many application fields, this

paves the way for democratizing work pro-

cesses even in areas where such a level of

democratization has not been thinkable before

(e.g. infrastructural knowledge bases such as

the Wikipedia) . His implementation, included

in this issue, has already been successfully

tested in the lab, and will soon find its way into

the official LiquidFeedback release.

Last but not least, Issue  4 will also contain an

addendum to the mathematical proof on pref-

erential delegation that has been presented in

Editorial

by the Editors, Berlin, July 28, 2015



The Liquid Democracy Journal4 issue 4

Editorial

the last issue. We were surprised that, in

between, Google Inc. released information

about an internal Liquid Democracy experi-

ment [GooglePaper] utilizing a preferential

delegation system [GoogleVideo] . As shown by

our proof, certain requirements cannot be ful-

filled at the same time. This also applies to

those experiments, resulting in negative vot-

ing weight in case ofthe given approach.

We would like to note that the proof regarding

negative voting weight might be generalized

further. Property  2 in the original proof [PD]

might be removed from the list of contradict-

ing properties if each case considers all pos-

sible partial permutations ofvoters. Since such

formalization and generalization wouldn't

change anything in regards to the practical im-

pact of our findings, we will not provide a

formal proof in this matter. Such a proof,

however, might be oftheoretical interest.

Dangerous misconceptions

Liquid Democracy has recently been getting

more and more attention by researchers,

politicians, and even companies. The experi-

ment done by Google Inc. is one example for

this development.

While we are generally happy about the pop-

ularity of Liquid Democracy, we are also con-

cerned about the fact that some properties of

electronic decision making are constantly ig-

nored, as so in case of the paper [GooglePaper]

describing Google's experiments.*

Hardt and Lopes propose in their paper that

only those ballots that use delegated voting

weight need to be public.*

They refer to this conception as the “Golden

rule of Liquid Democracy”. [GooglePaper, p.4]

But not all that glitters is gold: it can easily be

shown that this allows neither for a verifica-

tion of the processes by the voters nor for cast-

ing votes secretly (i.e. Google Inc. could still

know what everybody voted on) . Therefore, the

participants of the system would not have any

way to check the results of the system; they

would have to blindly trust the results.* It is

obvious that such an approach doesn't meet

democratic standards at all and thus should

neither be called “Golden rule” nor “Demo-

cracy”.

As this was the first experiment ofGoogle Inc.

with Liquid Democracy, there is still the

chance to correct such aberrations before cre-

ating a product for the general market. But it

will be a big challenge to provide a solution

which can be legitimately trusted by the users.

This would require a completely transparent

system which is verifiable by the users: all bal-

lots must be published by the system and any

algorithm influencing the democratic process

(including any used sorting algorithm) must

be public as well. For us, this seems to be con-

tradictory to the business goals of Google Inc.

at least at the current time.

Nonetheless, we do not want to criticize

Google for experimenting in that domain, but

we must warn people ofusing the term “demo-

cracy” for systems that cannot meet democrat-

ic standards. We do not want to live in a future



5The Liquid Democracy Journalissue 4

Editorial

where people are encouraged to vote “anonym-

ously” while – in fact – a global corporation

counts and records all votes. Cryptographic

protocols are unable to provide a solution to

this problem. [PLF, chapter  3]

Ifvotes are being recorded, they must be recor-

ded publicly such that all participants may

verify the process, and all participants must be

aware that they are not taking part in a secret

ballot but in an open ballot. For all other demo-

cratic decisions (i.e. those democratic de-

cisions that ought to be secret) , we strongly

suggest the use ofphysical ballot boxes instead

ofelectronic systems.

Accreditation, accreditation, accredita-

tion (and publication ofthe ballot data)

We predict that the greatest challenge for a

further democratization of platforms like the

Wikipedia will be a proper accreditation of the

participants (the only way to properly ensure

one vote per real person) along with creating

an acceptance for publishing ballots. Without

publishing each participant's ballot in an elec-

tronic voting system, verifiability for the parti-

cipants cannot be achieved. (For further de-

tails, refer to chapter  3 in our book “The

Principles of LiquidFeedback” [PLF] .) In no

case can non-verifiable systems be called

“democratic”, because systems which are not

verifiable by the participants are never demo-

cratic.

We hope that the dream of a more self-organ-

ized and more democratic world soon becomes

true, and that secret elections remain truly

secret where they are needed.

The Editors

________

[PLF] Behrens, Kistner, Nitsche, Swierczek: “The Principles ofLiquidFeedback”. ISBN 978-3-00-044795-2. Published January 2014 by In-

teraktive Demokratie e.   V. , available at http://principles. liquidfeedback.org/

[PD] Jan Behrens &Björn Swierczek: Preferential Delegation and the Problem ofNegative VotingWeight. In “The Liquid Democracy

Journal on electronic participation, collective moderation, and voting systems”, Issue  3 (2015-01-23). ISSN 2198-9532. Published by In-

teraktive Demokratie e.   V.

[GooglePaper] Steve Hardt &Lia C. R. Lopes: “Google Votes: A Liquid Democracy Experiment on a Corporate Social Network”, Technical

Disclosure Commons, June 5, 2015. http://www.tdcommons.org/dpubs_series/79

[GoogleVideo] Steve Hardt: YouTube video “Liquid Democracy with Google Votes, Part  2”, March  12, 2014, GoogleTechTalks. Uploaded to

YouTube on June  27, 2015. https://www.youtube.com/watch?v=F4lkCECSBFw

________

* Edited as ofMay 10, 2017. For details, refer to the errata file in the ZIP archive ofthis issue or the corrigendum on page  4 ofIssue  #5 of

The Liquid Democracy Journal.



The Liquid Democracy Journal6 issue 4

Print version

The print version of Issue  2 contained an error

in Figure  6 on page  26 (article “Dividing the Pie

– Visualizing Quantities and Qualities of Ma-

jorities in Pie Charts”) . The unit (360°) was

missing in the formula depicted in Figure  6.

Instead of “αpie” read “αpie / 360°”. This error

has already been fixed in the first publication

of the electronic version (revision  1, 2014-11-29)

ofIssue  2.

Electronic version

In the first publication ofthe electronic version

(revision  1, 2014-11-29) of Issue  2, the HTML

version ofthe article “Dividing the Pie – Visual-

izing Quantities and Qualities ofMajorities in

Pie Charts” contained an error in the caption

ofFigure  6. The second line of the caption was

accidentally omitted. The full caption can be

found in the PDF version and reads: “Figure  6:

The formula to calculate the pie rotation in

case of supermajorities (q is the required su-

permajority, and 7/12 is an arbitrary value >  1/2

but ≈  1/2 to keep the ‘no’ block mostly left)”.

In the first publication ofthe electronic version

(revision  1, 2014-11-29) of Issue  2, a hyphen was

missing in the introductory text to Figure  9

(“Once upon a time…”) of the HTML version of

the article “Game ofDemocracy”. In lines 8 and

9 of the text above Figure  9 read “kingdom” in-

stead of“king dom”.

These two errors have been fixed in the elec-

tronic version, revision 2 (2015-07-27) of Issue

2.

Errata for Issue 2



7The Liquid Democracy Journalissue 4

Read in this Issue:

Democratic File Revision Control
with LiquidFeedback
by Björn Swierczek, Berlin

A Finite Discourse Space
for an Infinite Number OfParticipants
by Jan Behrens, Andreas Nitsche, Björn Swierczek, Berlin

Addendum to our Theorem Regarding
Preferential Delegation and Negative VotingWeight
by Jan Behrens, Berlin

8

42

53



The Liquid Democracy Journal8 issue 4

Democratic File Revision Control

with LiquidFeedback

by Björn Swierczek, Berlin, July 28, 2015

I. Abstract

In this paper, it is shown how a project team

can democratically decide on incorporating

changes of files held in a repository managed

by a revision control system by extending Li-

quidFeedback and its proposition development

and decision making process.

LiquidFeedback [LF] is an open source soft-

ware for proposition development and de-

cision making published by the Public Soft-

ware Group e.   V., Berlin, Germany [PSG] . [PLF,

p.13] Since 2010 the software LiquidFeedback

is used by political parties, non-governmental

organizations, regional governments, and

companies for opinion formation, binding de-

cision making, and citizen petitions.

A revision control system is the standard way

to track changes of the source code of a com-

puter software developed by multiple authors.

This technique is also used for many other pur-

poses, like tracking changes to documents,

books, datasets, product data, or any other

kind of information. Different revision control

systems are available on the market and used

widely. Often used systems are Git [Git] , Mer-

curial [Mercurial] , and Subversion [Subver-

sion] . Other software is incorporating aspects

of revision control systems to track changes

while providing other functionalities, e.g. Wiki

systems like MediaWiki [MediaWiki] used by

Wikipedia [Wikipedia] .

But these systems lack support for collective

decisions on incorporating changesets. In

most implementations, either a user has write

privileges or not. Therefore, in larger projects,

especially projects with more than a few dozen

active contributors, only a small number of

people regularly have final control over the

files held in the repository. They are moderat-

ing the process ofapplying changes and finally

deciding ifa change set will be included or not.

To overcome these limitations and to get rid of

the need of privileged moderators, it is shown

that it is possible to extend and use Liquid-

Feedback in such a way that the process of



9The Liquid Democracy Journalissue 4

changing the files managed by a revision con-

trol system can be organized collectively by the

members of the project team using Liquid-

Feedback's proposition development and de-

cision making process. Furthermore, it will be

shown that these concepts can also be adopted

by many other systems which are utilizing re-

vision control systems.

Through implementing a proofofconcept, it is

demonstrated that it is technically possible to

organize democratic decision making on in-

corporating changes to files held in a reposit-

ory. Therefore, the decision if a project makes

use of privileged moderators or implements a

democratic decision process is not a technical

question anymore, but an organizational or

political one. This opens new application fields

for democratic processes in the context ofrevi-

sion control and at the same time new applica-

tion fields for revision control systems in the

context ofdemocratic processes. It is also pos-

sible to create completely new application

fields by using the synergistic effects created

by utilizing LiquidFeedback with revision con-

trol systems.

As this paper addresses different scientific

fields, the basic functionality of LiquidFeed-

back and revision control systems are ex-

plained in the following sections II and III.

Figure 1: Screenshots ofLiquidFeedback (mobile view) and HgWeb serving a Mercurial repository (graph view)

Democratic File Revision Controlwith LiquidFeedback



The Liquid Democracy Journal10 issue 4

I I. Introduction to LiquidFeed-
back's Proposition Development
and Decision Making Process

LiquidFeedback is an open source software,

which can be installed on an internet server

and used through a web browser. LiquidFeed-

back offers a unique proposition development

and decision making process whose structure

and main features are described in the follow-

ing:

II.1. Organizational unit (short form: unit)

The units are the highest hierachical structure

of LiquidFeedback, intended to represent or-

ganizational units, like national, regional and

local chapters. Units are organized as tree to

organize subsidiary chapters below their su-

perior chapters. Voting privileges are given to

users per unit without inheritance to subsidi-

ary or superior units. [PLF, p.158]

II.2. Subject area (short form: area)

Every unit has one or more subject areas, hold-

ing the possible issues together in groups of

similar topics, e.g. finances, public relations,

different fields of politics, etc. A subject area

belongs to a unit. [PLF, section  4.8] [PLF, p.165]

Democratic File Revision Controlwith LiquidFeedback

Figure 2: Screenshot showing LiquidFeedback used for civic participation by the City ofWunstorf[Wunstorf]



1 1The Liquid Democracy Journalissue 4

II.3. Issue

An issue is a group ofcompeting initiatives go-

ing together through the four phases of a de-

cision in LiquidFeedback. An issue is automat-

ically created when a new initiative is started

and not placed into an existing issue. Each is-

sue is identified by a unique number, which is

automatically assigned when it is created. Per

issue, not more than one initiative can be ac-

cepted as winner in the end. An issue belongs

to a subject area. [PLF, section  4.4] [PLF, p.147]

[PLF, section  4.8]

II.4. Initiative

The initiative is the main form to express a will

in LiquidFeedback. It can consist of a proposal

and/or reasons for it and/or reasons against

other competing initiatives. Initiatives can be

supported by users, changed until the verifica-

tion phase begins, and finally be voted upon in

the voting phase. An initiative belongs to an is-

sue. [PLF, subsection  4.1.1] [PLF, section  4.4]

II.5. Draft

A draft is a version of an initiative. Every time

an initiator changes the content of an initiat-

ive, a new draft is created. Old drafts are saved

for future reference. [PLF, subsection  4.1.1]

II.6. Initiator

The initiator is the user who created an initiat-

ive. Only an initiator can change the content of

an initiative during discussion. The initiator

can invite other users as initiator, which gain

the same rights as the original initiator after

accepting the invitation. This includes the

right to grant or revoke initiator privileges

to/from another initiator of the same initiat-

ive. [PLF, subsection  4.1.1] [PLF, p.154]

II.7. Supporter

A supporter is a user supporting an initiative,

helping it to fulfill the quora measured at the

end of the admission and verification phases.

Users which have rated a suggestion as “must”

but “not fulfilled”, or “must not” but “fulfilled”

are counted as potential supporters, support-

ing the initiative only under the requirements

expressed in the rated suggestions. [PLF,

(sub)sections 4.1.1, 4.1.2, 4.3, 4.6]

II.8. Suggestion

Suggestions are placed by users to propose im-

provements for initiatives. This can range

from a simple typo or grammar correction to

complex changes of the initiative. All support-

ers of an initiative can rate suggestions to let

the initiator(s) know about the collective opin-

ion and how they could improve the initiative.

Suggestions can be rated as “must”, “should”,

“should not”, “must not” and whether they are

“implemented” or “not implemented”.

If a suggestion will be implemented or not is

the decision of the initiator(s) only. But if a

widely demanded suggestion is not implemen-

ted in the initative, any user can start an al-

ternative competing initiative implementing

this suggestion (similiar to “forking” a soft-

ware project) . [PLF, subsection  4.1.2]

Democratic File Revision Controlwith LiquidFeedback



The Liquid Democracy Journal12 issue 4

II.9. Policy (rules ofprocedure)

A policy (also referred to as “rules of proced-

ure”) is a set of configuration settings, includ-

ing:

• how long the four phases of a decision

should last,

• which quora are applied at the end of the

admission and verification phases, and

• which majorities are needed in the voting

phase to become accepted as winner.

The initiator ofan initiative, which is not placed

in an existing issue, can choose the policy to use

for the newly created issue. As there is no com-

putable way to check ifthe correct policy is chosen,

it is up to the users not to support issues which

are misusing policies. [PLF, subsection  4.7]

II.10. Predictable timing offour phases

An issue in LiquidFeedback is going through

four phases: [PLF, section  4.6]

• admission phase,

• discussion phase,

• verification phase, and

• voting phase.

The duration ofthe four phases depends on the

settings of the chosen policy. Therefore the

timing can be predicted. [PLF, section  4.5]

II.11. Using quora to moderate the process

To moderate the overall process and to filter

out issues and initiatives which do not have

enough support, a quorum needs to be passed

after the admission phase and before the vot-

ing phase. How many supporters are needed to

let an issue or initiative pass is configured in

the chosen policy. [PLF, section  4.3] [PLF, sec-

tion  4.7]

II.12. Transitive delegated voting (Liquid

Democracy)

The basic idea ofLiquid Democracy is a demo-

cratic system in which issues are decided by

direct referendum, but votes can be dynamic-

ally delegated by topic as not every participant

has time and personal knowledge about every

issue. Implementing this idea allows also to

dynamically find experts for specific subject

areas and issues in a democratic and traceable

way. Other terms referring to the same idea

are “Delegated Voting” and “Proxy Voting”.

[PLF, chapter 2]

II.13. Minority Protection with the Har-

monic Weighting algorithm for a fair

share ofdisplay space

Even though any democratic decision that has

at least one dissentient vote leads to a overruled

minority, it is still possible to protect minorit-

ies in democratic processes. The most import-

ant measures of protecting minorities are un-

alienable, constitutional rights, which are

granted in most democracies. But this cannot

be ensured algorithmically and is therefore out

ofscope ofcomputer software. [PLF, section  4.10]

Another form ofminority protection is to give

minorities a fair chance to promote their posi-

tions for discussion in the democratic process.

[PLF, section  4.10]

Democratic File Revision Controlwith LiquidFeedback



1 3The Liquid Democracy Journalissue 4

LiquidFeedback implements this form of

minority protection: minorities are given the

right to promote their positions. Technically

there is no limit in the number of issues to be

discussed in an online system since many is-

sues can be handled simultaneously (unlike

“offline” conventions, where usually only one

issue can be discussed at a time) . But there is

another limit of online systems: the display is

limited and can only present a small amount of

information at the same time and users can

only absorb a limited amount of information

per time. To ensure a fair share of this limited

display space, LiquidFeedback implements the

Harmonic Weighting algorithm, which pro-

portionally shares the available display space

between all initiatives in such a way that

minorities can put their issues and initiatives

into the debate while noisy minorities (e.g. so-

called internet trolls) are not able to harm oth-

er minorities by allocating an unfair share of

display space by placing a large amount of ini-

tiatives. [PLF, section  4.10] [Evolution]

II.14. Preferential voting avoiding tactical

behavior

LiquidFeedback utilizes a modern preferential

voting system for the final decision in the vot-

ing phase of an issue which is based on the

Schulze Method (some-

times referred to as

Cloneproof Schwartz

Sequential Dropping) .

The Schulze Method

fulfills certain criteria

which are desired for

democratic processes,

e.g. [Schulze] [PLF, section 4.14]

• Independence ofClones,

• Monotonicity,

• Schwartz Criterion, and

• Independence of Smith-dominated Altern-

atives (ISDA or Smith-IIA) .

While fulfilling several further properties, the

Schulze Method is implemented in Liquid-

Feedback with a robust tie breaking system,

solving situations the Schulze Method cannot

solve alone. [Schulze] [TieBreaker] The most

notable property of the Schulze Method is to

lessen incentives for tactical voting behavior.

[PLF, section  4.14]

II.15. Further process and implementation

details

The LiquidFeedback proposition development

and decision making process and it's imple-

mentation in LiquidFeedback Core [Core] and

LiquidFeedback Frontend [Frontend] utilize

further concepts to provide a scalable way of

collective proposition development and de-

cision making and is actively advanced regard-

ing theory and practice by the Public Software

Group e.   V. [PSG] and Interaktive Demokratie

e.   V. [IAD] , both in Berlin, Germany. [LF] [PLF]

[LDJournal] [liquidfeedback.org]

Democratic File Revision Controlwith LiquidFeedback

Figure 3: Screenshot ofchoosing a policy in LiquidFeedback's frontend



The Liquid Democracy Journal14 issue 4

I I I. Introduction to Revision Con-
trol Systems

A revision control system is a computer soft-

ware to manage different versions ofdata files.

Especially it is used to track changes on text

files like source code, configuration files, docu-

mentation, articles, books, but also to track

changes on product data, i.e. construction data

for cars, airplanes and other products.

With a revision control system, so-called “re-

positories” can be created, which hold different

versions of files and track their changes. A

bundle of changes to files in the repository is

often called changeset. An important feature of

revision control systems beneath the tracking

of changes is the ability to go back to any past

revision of a file or any previous changeset, as

long as it is stored in the repository.

Nowadays revision control systems use the in-

ternet to allow groups of creators working to-

gether from different places of the world while

tracking each changeset back to its originator.

This enables groups of creators to collectively

work on source code, articles, or other data

while minimizing communication overhead.

Most revision control systems are offering the

possibility to create “branches”, i.e. giving a

name to a series of changesets which are not

(yet) part of the official main branch. The offi-

cial or main branch of a project is often ref-

erred to as trunk or master branch.

To incorporate changesets made in branches

into the trunk or master branch, most revision

control systems have a merge command,

which allows merging changes.

Aspects of revision control systems are also in-

corporated in other computer software for

tracking changes, e.g. in Wiki systems like Me-

diaWiki used by the Wikipedia. [MediaWiki]

[Wikipedia]

Democratic File Revision Controlwith LiquidFeedback

Figure 4: Screenshot ofthe Git repository ofLinus Torvalds' sources for the Linux Kernel [Torvalds]



1 5The Liquid Democracy Journalissue 4

Figure 6: Screenshot of the revision history ofthe Wikipedia article on Wikipedia itself[Wikipedia2]

Democratic File Revision Controlwith LiquidFeedback

Figure 5: Screenshot ofthe Mercurial repository ofthe Roundup Issue Tracker as seen on SourceForge [Roundup]



The Liquid Democracy Journal16 issue 4

IV. Extending LiquidFeedback for
usewith a revision control system

In this section, it is shown how LiquidFeed-

back can be extended to collectively decide on

merging changesets to the trunk or master

branch ofa repository.

IV.1. Terms

The terms used by LiquidFeedback are created

for generic democratic decisions. For using the

LiquidFeedback process in the context of revi-

sion control systems, I propose a mapping of

the terms as follows:

Unit -> Repository Initiative -> Branch

Area -> Module Draft -> Changeset

Issue -> Issue Suggestion -> Suggestion

IV.2. The basic idea

The basic idea is that changes to the files held

in the trunk of a repository require a formal

decision by the project team (or another em-

powered group of persons) using the Liquid-

Feedback proposition development and de-

cision making process.

To achieve this functionality, it is proposed to

extend LiquidFeedback in such a way that each

initiative represents a branch in the repository

and each draft represents a changeset of this

branch. Even while I suggest to map “initiat-

ives” to “branches” for this specific purpose, in

fact they will still be LiquidFeedback initiat-

ives, which need to go successfully through all

four phases of the LiquidFeedback proposition

development and decision making process to

become accepted.

During these phases, the members of the pro-

ject team (or other empowered persons) can

use all regular functionalities of LiquidFeed-

back to debate and decide about the branch. At

the same time, all regular functionalities of the

revision control system can be used with one

exception: branches with names possibly ref-

erencing an LiquidFeedback initiative (i.e.

having a name in a certain format, e.g. “i123” to

reference the initiative with the ID 123) can

only be committed to the repository if an initi-

ative with the referenced ID exists and is still

in admission or discussion phase. Further-

more the user committing the branch needs to

be initiator ofthat initiative. This also allows to

merge changesets created in other branches to

one's own branch, i.e. one's own initiative.

To enhance a branch, suggestions can be made

unless the verification phase has already be-

gun. The suggestion may include additional

changesets to be added by the initiator(s) if

they like to incorporate them into their branch.

Any member of the project team (or other em-

powered persons) can also create a competing

branch by creating an alternative LiquidFeed-

back initiative in the same issue unless the vot-

ing phase has already begun.

After the voting phase of an issue ends, it is

proposed to merge that branch to the project's

trunk which has been declared winner of the

issue, ifany.

Democratic File Revision Controlwith LiquidFeedback



1 7The Liquid Democracy Journalissue 4

[user@client ~]$ hg clone http://dev.liquidfeedback.org/revision-control/hg/helloworld
[.. .]
requesting all changes
adding changesets
adding manifests
adding file changes
added 1 changesets with 1 changes to 1 files
updating to branch default
1 files updated, 0 files merged, 0 files removed, 0 files unresolved
[user@client ~]$ cd helloworld/
[user@client ~/helloworld]$ hg branch i1
marked working directory as branch i1
(branches are permanent and global, did you want a bookmark?)
[user@client ~/helloworld]$ vi helloworld.lua
[user@client ~/helloworld]$ hg add helloworld.lua
[user@client ~/helloworld]$ hg commit -m 'First version of helloworld.lua'
[user@client ~/helloworld]$ hg push --new-branch
pushing to http://dev.liquidfeedback.org/revision-control/hg/helloworld
[.. .]
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files
remote: [lf4rcs] inspecting changesets
remote: [lf4rcs] checking branch i1
remote: [lf4rcs] adding node 31eac3c1bc07ce76c498d89512d6ed2c0981c7f4 to initiative i1
remote: [lf4rcs] changes cleared. continue committing.

Democratic File Revision Controlwith LiquidFeedback

Figure 7: Screenshot showing creation ofa new initiative in LiquidFeedback

Figure 8: Protocol ofa terminal session adding a repository changeset to a LiquidFeedback initiative



The Liquid Democracy Journal18 issue 4

The policies (rules of procedure) framework of

LiquidFeedback can be used to allow different

quora, timings and majorities for different

types of branches, i.e. for bug fixes, enhance-

ments, documentation, etc. to reflect the dif-

ferent needs ofdifferent types ofdecisions.

IV.3. Concurrency ofdecisions

A special problem seems to be the fact that oth-

er changesets may have been already applied to

the trunk or master branch between proposing

a changeset the first time and the decision

after the four phases ofLiquidFeedback.

Using different timings, it is also possible that

a changeset is applied before another change-

set although it has been started after the other

changeset's LiquidFeedback initiative already

reached the verification or voting phase.

Therefore, it is not possible to reflect changes

made by the “faster” changeset anymore. This

can lead to a merge conflict, i.e. two change-

sets changing the same part of a file. Thus a

proposed changeset can break at any time, so it

would not be possible to apply the changeset at

the current time.

But more important would be the answer to

the question: “Would the changeset still apply

without merge conflicts after its decision and

after other changesets are applied to the trunk

or master branch?”

IV.3.a. Predict future changesets

We cannot predict which changesets will be ac-

cepted in the end. But at any time we could

make useful assumptions based on the approv-

al rates (supporter counts) made during the

first three phases of LiquidFeedback. It could

be assumed that any branch which has been

accepted for discussion and has an approval

rate ofmore than 50% (and being the initiative

with the highest supporter count in its issue)

will be accepted as winner later. Based on this

assumption, we can try to apply the associated

changesets in the order of the predictable end

of the voting phase and check if they cleanly

apply. If any changeset would not be (hypo-

thetically) applicable anymore, the initiators or

interested users could be informed appropri-

ately.

This prediction system could be extended to a

more sophisticated system, which traces dif-

ferent paths in parallel.

IV.3.b. Exclusions and requirements

Another mechanism to solve the problem of

concurrent decisions could work as follows: Li-

quidFeedback could be extended to allow the

initiator(s) to add two lists of references to

other branches, which are expected to be de-

cided previously. An entry in one list indicates

that the current branch should *not* be ap-

plied if at least one of the referenced branches

is accepted (exclusion) while all branches ref-

erenced in the other list need to be accepted

(requirement) .

As soon as an excluded branch is accepted or a

required branch is declined, the branch should

become automatically revoked unless the initi-

ative is still in admission or discussion phase

Democratic File Revision Controlwith LiquidFeedback



1 9The Liquid Democracy Journalissue 4

and the initiator(s) could still make appropri-

ate changes healing the branch. For the pur-

pose of automatic revocation, a new finished

state for LiquidFeedback issues could be intro-

duced: “Canceled because of unfulfilled pre-

condition”.

This system could be extended by a more soph-

isticated way to describe the preconditions, i.e.

nested sets of exclusions and requirements

combined with logical “AND”/“OR” operations.

IV.3.c. Let the users decide

A very easy way to solve problems related to

concurrency is to simply ignore merge con-

flicts algorithmically but let the users handle

them. For example, after the changesets asso-

ciated with a LiquidFeedback initiative cannot

be merged due to conflicting changesets, any

user could start another initiative and post a

changeset which fixes this conflict. As soon as

this initiative is accepted as winner, this fixing

changeset will be incorporated together with

the changesets of the initiative which couldn't

be merged previously. For this purpose, a spe-

cial policy with an appropriately short discus-

sion and decision time could be configured in

LiquidFeedback.

IV.3.d. Merging 2nd winner if1st winner

fails

In situations where changesets associated with

a LiquidFeedback initiative which has been de-

clared winner cannot be merged due to other

conflicting changesets which already have

been merged, one could come up with the idea

to try merging the 2nd winner (or the 3rd ifthe

2nd fails too, and so on) , based on the motto

“you had your chance”. But this would not be

wise, as it could create an unwanted feedback

to the behavior ofusers. A user who is obsessed

about an initiative could try to create short

lasting initiatives (e.g. with a bug fix or docu-

mentation policy) , or modify already running

initiatives, to intentionally break a promising

initiative. This attempt could be easily hidden,

e.g. as typo fix or an enhancement of docu-

mentation. If such an attempt is successful, a

situation could arise where an initiative being

the first winner is not applicable anymore, but

the second one (the one the user is obsessed

about) is. As this would be unfair, only first

winners should be merged.

IV.4. Accreditation ofusers

Any democratic decision making system needs

a proper accreditation to ensure that every

eligible person (e.g. developers of a software

project) get exactly one account (and therefore

one vote) and nobody else. This condition is

also valid for LiquidFeedback and therefore

also for using LiquidFeedback with revision

control systems. [PLF, subsection  6.1.1]

IV.5. Verifiability by the users

Democratic decisions need to be verifiable. It

is impossible to make electronic votings secret

and at the same time verifiable by the parti-

cipants. Therefore, the only way to implement

electronic decisions verifiable by the parti-

cipants are open recorded votes. [PLF,

chapter  3]

Democratic File Revision Controlwith LiquidFeedback



The Liquid Democracy Journal20 issue 4

V. Technical Implementation

V.1. Environment

To use LiquidFeedback and one or more revi-

sion control systems on an internet server, it is

necessary to setup the following open source

software packages according to the setup in-

structions provided by the distribution and

package maintainers:

• Linux or BSD (operating system) [Debian]

[ArchLinux] [FreeBSD] ,

• HTTP web server supporting the CGI inter-

face [Apache] [Lighttpd] ,

• PostgreSQL (database server) , version 9.1

(or higher) [PostgreSQL] ,

• LiquidFeedback Core, version 3.0.5 [Core] ,

• Lua (programming language) , version 5.2 or

5.3 [Lua] ,

• Moonbridge Network Application Server

for Lua, version 1.0.1 [Moonbrige] ,

• WebMCP (web application framework) ,

version 2.0.2 [WebMCP] ,

• Markdown2 [Markdown2] ,

• LiquidFeedback Frontend, version 3.0.9

[Frontend] ,

• one or more revision control systems, e.g.

• Git (distributed version control system)

[Git] , including

• Gitweb [GitWeb] and

• git-http-backend [git-http-backend] ,

• Mercurial (distributed source control

management system) [Mercurial] , including

• HgWeb [HgWeb] ,

• other revision control systems.

V.2. Configuring the HTTP web server to

authenticate users against LiquidFeed-

back

The web server needs to be set up in such a way

that users need to log in with a user name and

password (via HTTP access control) . To allow

authentication with the username and pass-

word used in LiquidFeedback (single sign-on,

SSO) , a htaccess file as used by many HTTP

web servers to store user authentication data

can be created using the following shell com-

mand, which should be run regularly to reflect

changes of the LiquidFeedback user database

in the web server's authentication file (<name

of LiquidFeedback database> needs to be re-

placed by the name of the LiquidFeedback

database in PostgreSQL):

echo "SELECT login || ':' || password …

FROM member WHERE NOT locked;" | psql …

<name of LiquidFeedback database> -A -t > …

/etc/lighttpd/htpasswd.new && mv …

/etc/lighttpd/htpasswd.new …

/etc/lighttpd/htpasswd

V.3. Configuration ofLiquidFeedback

V.3.a. Setup for controlling revision con-

trol systems

For LiquidFeedback, I assume the following

setup:

• The LiquidFeedback web service provided

by LiquidFeedback Frontend is available at:

http://liquidfeedback/lf3

________

The ellipsis symbol… indicates that the current line ofsource code is wrapped for the print layout and continues at the next line.

Democratic File Revision Controlwith LiquidFeedback



21The Liquid Democracy Journalissue 4

#!/usr/local/bin/lua

assert(loadfile("/srv/webmcp/framework/bin/mcp.lua"))(
"/srv/webmcp/framework",
"/srv/liquid_feedback_frontend",
"main",
"revision-control"

)

local arg1, arg2, arg3 = ...

lf4rcs.update_references(arg1, arg2, arg3)

Source code 2: Lua code ofa generic commit hook handler for use by revision control systems

• The accreditation of the team members (or

other empowered persons) as LiquidFeed-

back members is finished and done prop-

erly. [PLF, subsection  6.1.1]

V.3.b. Setup for a project

For any project, a unit needs to be created in

the administration interface of LiquidFeed-

back Frontend. The revision control system

and the repository used by this project need to

be configured in the external reference field of

the unit created. The format of the configura-

tion is

<repository type> <path on file system> …

<web url of repository>

V.4. LiquidFeedback Extension for Revi-

sion Control Systems (lf4rcs)

To allow LiquidFeedback (and therefore its

users by democratic decision) to actually con-

trol one or multiple revision control systems, I

implemented an extension for LiquidFeed-

back. This extension implements a modular

framework which can be configured to be used

with revision control systems. The extension

consists ofthree parts:

• controlling and tracking commits to a re-

pository,

• handling finished issues and winner initi-

atives, and

• formatting ofweb links to changesets.

The following source code needs to be loaded

by the configuration of LiquidFeedback Fron-

tend:

See Source code 1 (on following pages)

It is necessary to create /srv/commithook.lua

with the following content:

See Source code 2 (below)

. . .   and to make it executable by the operating

system:

chmod +x /srv/commithook.lua

Democratic File Revision Controlwith LiquidFeedback



The Liquid Democracy Journal22 issue 4

_G["lf4rcs"] = {}

lf4rcs.config = {}
lf4rcs.log_prefix = "[lf4rcs] "

function lf4rcs.exec(...)
local output, err_message, exit_code = extos.pfilter(nil, ...)
local command_parts = {...}
for i, part in ipairs(command_parts) do

if string.match(part, " ") then
command_parts[i] = '"' .. part .. '"'

end
end
local command = table.concat(command_parts, " ")
return command, output, err_message, exit_code

end

function lf4rcs.get_config(unit)
if not unit.external_reference then

error("Unit is not configured for lf4rcs")
end
local repository, path, url = string.match(

unit.external_reference, "([^ ]+) ([^ ]+) (.*)"
)
return repository, path, url

end

function lf4rcs.commit(issue)
local repository, path, url = lf4rcs.get_config(issue.area.unit)
if not (lf4rcs.config[repository] and lf4rcs.config[repository].commit) then

error("Unsupported repository type")
end
local initiatives = Initiative:new_selector()

:add_where{ "issue_id = ?", issue.id }
:exec()

for i, initiative in ipairs(initiatives) do
local function exec(...)

local command, output, err_message, exit_code = lf4rcs.exec(...)
local log = "Executed: " .. command .. "\n"
if output then

log = log .. output .. "\n"
end
if err_message and #err_message > 0 then

log = log .. "ERROR: " .. err_message .. "\n"
end
if exit_code and exit_code ~= 0 then

log = log .. "Exit code: " .. tostring(exit_code) .. "\n"
end
issue.admin_notice = (issue.admin_notice or "") .. log
issue:save()

end
local close_message, merge_message
if initiative.winner then

close_message = "Initiative i" .. initiative.id

Source Code 1: Lua code ofthe LiquidFeedback extension lf4rcs (part 1 of4)

Democratic File Revision Controlwith LiquidFeedback



23The Liquid Democracy Journalissue 4

.. " accepted as winner. Closing branch."
merge_message = "Initiative i" .. initiative.id

.. " accepted as winner. Applying branch changesets to upstream."
else

close_message = "Initiative i" .. initiative.id .. " rejected. Closing branch."
end
local target_node_id = initiative.current_draft.external_reference
if target_node_id then

local branch = "i" .. initiative.id
lf4rcs.config[repository].commit(

path, exec, branch, target_node_id, close_message, merge_message
)

end
end

end

function lf4rcs.render_draft_reference(draft, wrapper)
local repository, path, url = lf4rcs.get_config(draft.initiative.issue.area.unit)
if not (lf4rcs.config[repository] and lf4rcs.config[repository].render_draft_reference)

then
error("Unsupported repository type")

end
if draft.external_reference then

wrapper(function()
lf4rcs.config[repository].render_draft_reference(url, draft)

end)
end

end

function lf4rcs.render_initiative_reference(initiative, wrapper)
if initiative.current_draft.external_reference then

config.render_external_reference.draft(initiative.current_draft, wrapper)
end

end

function lf4rcs.update_references(repository, path, unit_id)
local function log(message)

print(lf4rcs.log_prefix .. message)
end
if not lf4rcs.config[repository]

or not lf4rcs.config[repository].get_remote_user
or not lf4rcs.config[repository].get_branches

then
log("Unsupported repository type")
os.exit(1)

end
log("inspecting changesets")
local remote_user = lf4rcs.config[repository].get_remote_user()
local function abort(message)

log("TEST FAILED: " .. message)
log("ABORTING and ROLLBACK due to failed test.")
db:query("ROLLBACK")
os.exit(1)

end

Source Code 1: Lua code ofthe LiquidFeedback extension lf4rcs (part 2 of4)

Democratic File Revision Controlwith LiquidFeedback



The Liquid Democracy Journal24 issue 4

db:query("BEGIN")
local member = Member:new_selector()

:add_where{ "login = ?", remote_user }
:optional_object_mode()
:exec()

if not member then
abort(

"internal error, member '"
.. remote_user .. "' not found in database"

)
end
local function exec(...)

local command, output, err_message, exit_code = lf4rcs.exec(...)
if not output then

log("Could not execute: " .. command)
abort(err_message)

end
if exit_code ~= 0 then

log("Could not execute: " .. command)
abort("Exit code: " .. tostring(exit_code))

end
return output

end
if lf4rcs.config[repository].extra_checks then

local success, err_message = lf4rcs.config[repository].extra_checks(path, exec)
if not success then

abort(err_message)
end

end
local branches, err = lf4rcs.config[repository].get_branches(path, exec)
if not branches then abort(err) end
for branch, head_node_ids in pairs(branches) do

log('checking branch ' .. branch)
if branch ~= lf4rcs.config[repository].working_branch_name then

local initiative_id = string.match(branch, "^i([0-9]+)$")
if not initiative_id

or initiative_id ~= tostring(tonumber(initiative_id))
then

abort("this branch name is not allowed")
end
initiative_id = tonumber(initiative_id)
if #head_node_ids > 1 then

abort("number of heads found for branch is greater than 1: " .. #head_node_ids)
end
local initiative = Initiative:by_id(initiative_id)
if not initiative then

abort("initiative i" .. initiative_id .. " not found" )
end
if initiative.issue.area.unit_id ~= tonumber(unit_id) then

abort("initiative belongs to another unit (unit ID " ..
initiative.issue.area.unit_id .. ")")

end
if

initiative.issue.state ~= "admission" and initiative.issue.state ~= "discussion"

Source Code 1: Lua code ofthe LiquidFeedback extension lf4rcs (part 3 of4)

Democratic File Revision Controlwith LiquidFeedback



25The Liquid Democracy Journalissue 4

then
abort("issue is already frozen or closed (" .. initiative.issue.state .. ")")

end
if initiative.revoked then

abort("initiative has been revoked")
end
local initiator = Initiator:by_pk(initiative.id, member.id)
if not initiator then

abort("member is not initiator of initiative i" .. initiative_id)
end
if not initiator.accepted then

abort(
"member has not accepted invitation to become initiator of initiative i"
.. initiative_id

)
end
local node_id = head_node_ids[1] or false
if node_id then

log("adding node " .. node_id .. " to initiative i" .. initiative_id)
else

log("removing node reference from initiative i" .. initiative_id)
end
Draft:update_content(member.id, initiative_id, nil, nil, node_id)

end
end
log("changes cleared. continue committing.")
db:query("COMMIT")
os.exit(0)

end

function lf4rcs.notification_handler(event)
if event.event == "issue_state_changed" and (

event.state ~= "admission" and
event.state ~= "discussion" and
event.state ~= "verification" and
event.state ~= "voting"

) then
lf4rcs.commit(event.issue)

end
end

function lf4rcs.init()
local super_handler = config.notification_handler_func
config.notification_handler_func = function(event)

if super_handler then super_handler(event) end
lf4rcs.notification_handler(event)

end
config.render_external_reference = {

draft = lf4rcs.render_draft_reference,
initiative = lf4rcs.render_initiative_reference

}
end

Source Code 1: Lua code ofthe LiquidFeedback extension lf4rcs (part 4 of4)

Democratic File Revision Controlwith LiquidFeedback



The Liquid Democracy Journal26 issue 4

V.5. Configuration for controlling Git

V.5.a. Setup for revision control by de-

cisions made in LiquidFeedback

The following configuration is assumed for the

project specific setup in the following subsec-

tion  b:

• The root ofthe repositories is /srv/http/git

• The repository directories are owned by the

web server operating system user

• The repository directories can be read and

written by web server operating system

user

• The directory /srv/git can be read and writ-

ten by web server operating system user

• git-http-backend is serving repositories at

the base address http://liquidfeedback/git/

• Gitweb is serving repositories at the base

address http://liquidfeedback/gitweb/

The following source code needs to be loaded

by the configuration of LiquidFeedback Fron-

tend after lf4rcs has been loaded:

See Source Code 3.1

V.5.b. Setup for a project

For any project, a bare git repository needs to

be created:

git init --bare …

/srv/http/git/helloworld.git

A call ofthe lf4rcs commit hook needs to be ad-

ded to the hooks of the git repository (assum-

ing the corresponding LiquidFeedback unit  ID

is 1) :

See Source Code 3.2

Finally a clone ofthe repository has to be created:

cd /srv/git/

git clone /srv/http/git/helloworld.git

The configuration stored as external reference

of the corresponding LiquidFeedback unit

needs to be set to:

git /srv/git/helloworld …

http://liquidfeedback/gitweb/helloworld.git

Democratic File Revision Controlwith LiquidFeedback

[www@server ~]$ git init --bare /srv/http/git/helloworld.git
Initialized empty Git repository in /srv/http/git/helloworld.git/
[www@server ~]$ cat > /srv/http/git/helloworld.git/hooks/pre-receive << EOF
> #!/usr/bin/bash
> /srv/commithook.lua git /srv/http/git/helloworld.git 1
> EOF
[www@server ~]$ chmod +x /srv/http/git/helloworld.git/hooks/pre-receive
[www@server ~]$ cd /srv/git
[www@server /srv/git]$ git clone /srv/http/git/helloworld.git
Cloning into 'helloworld'...
warning: You appear to have cloned an empty repository.
done.
[www@server /srv/git]$

Figure 9: Protocol ofa terminal session preparing a Git repository



27The Liquid Democracy Journalissue 4

lf4rcs.config.git = {

render_draft_reference = function(url, draft)
if not draft.external_reference then return end
ui.tag{ content = _"Changeset:" }
slot.put(" ")
ui.link{

text = draft.external_reference,
external = url .. ";a=commit;h=" .. draft.external_reference

}
end,

get_remote_user = function()
return os.getenv("REMOTE_USER")

end,

get_branches = function(path, exec)
local branches = {}
for line in io.lines() do
local oldrev, newrev, branch = string.match(line, "([^ ]+) ([^ ]+) refs/heads/(.+)")
if not branch then

return nil, "unexpected format from git hook environment"
end
branches[branch] = { newrev }

end
return branches

end,

commit = function(path, exec, branch, target_node_id, close_message, merge_message)
if merge_message then

exec("git", "-C", path, "checkout", "master")
exec("git", "-C", path, "merge", target_node_id, "-m", merge_message)
exec("git", "-C", path, "push", "origin", "master")

end
end

}

cat > /srv/http/git/helloworld.git/hooks/pre-receive << EOF
#!/usr/bin/bash
/srv/commithook.lua git /srv/http/git/helloworld.git 1
EOF
chmod +x /srv/http/git/helloworld.git/hooks/pre-receive

Democratic File Revision Controlwith LiquidFeedback

Source code 3.2: Shell code to generate a commit hook handler for a Git repository

Source code 3.1: Configuration oflf4rcs for Git



The Liquid Democracy Journal28 issue 4

lf4rcs.config.hg = {
working_branch_name = "work",
render_draft_reference = function(url, draft)

if not draft.external_reference then return end
ui.tag{ content = _"Changeset graph:" }
slot.put(" ")
ui.link{

text = draft.external_reference,
external = url .. "/graph/" .. draft.external_reference

}
end,
get_remote_user = function() return os.getenv("REMOTE_USER") end,
get_branches = function(path, exec)

local first_node_id = os.getenv("HG_NODE")
if not first_node_id then return nil, "internal error, no first node ID available" end
local hg_log = exec(

"hg", "log", "-R", path, "-r", first_node_id .. ":", "--template", "{branches}\n"
)
local branches = {}
for branch in hg_log:gmatch("(.-)\n") do

if branch == "" then branch = "default" end
if not branches[branch] then

branches[branch] = {}
local head_lines = exec(

"hg", "heads", "-R", path, "--template", "{node}\n", branch
)
for node_id in string.gmatch(head_lines, "[^\n]+") do

table.insert(branches[branch], node_id)
end

end
end
return branches

end,
extra_checks = function(path, exec)

local result = exec("hg", "heads", "-t", "-c")
for branch in string.gmatch(result, "[^\n]+") do

if branch == lf4rcs.config.hg.working_branch_name then
return nil, "open head found for branch " .. lf4rcs.config.hg.working_branch_name

end
end
return true

end,
commit = function(path, exec, branch, target_node_id, close_message, merge_message)

exec("hg", "up", "-R", path, "-C", "-r", target_node_id)
exec("hg", "commit", "-R", path, "--close-branch", "-m", close_message)
if merge_message then

exec("hg", "up", "-R", path, "-C", "-r", "default")
exec("hg", "merge", "-R", path, "-r", "tip")
exec("hg", "commit", "-R", path, "-m", merge_message)

end
end

}

Democratic File Revision Controlwith LiquidFeedback

Source code 4.1: Configration oflf4rcs forMercurial



29The Liquid Democracy Journalissue 4

V.6. Configuration for controlling Mercurial

V.6.a. Setup for revision control by de-

cisions made in LiquidFeedback

The following configuration is assumed for the

project specific setup of the following subsec-

tion  b:

• The root ofthe repositories is /srv/hg

• The repository directories are owned by the

web server operating system user

• The repository directories can be read and

written by web server operating system

user

• HgWeb is serving repositories at the base

address http://liquidfeedback/hgweb/

The following source code needs to be loaded

by the configuration of LiquidFeedback Fron-

tend after lf4rcs has been loaded:

See Source code 4.1

V.6.b. Setup for a project

For any project, a mercurial repository needs

to be created:

hg init /srv/hg/helloworld

A call ofthe lf4rcs commit hook needs to be ad-

ded to the hooks of the Mercurial repository

(assuming the corresponding LiquidFeedback

unit  ID is 2) :

See Source code 4.2

The configuration stored as external reference

of the corresponding LiquidFeedback unit

needs to be set to:

hg /srv/hg/helloworld …

http://liquidfeedback/hgweb/helloworld

V.7. Configuration for controlling other

revision control systems

An implementation for any other revision con-

trol system can be carried out similarly to the

previously described setup using Git and/or

Mercurial, as long as the revision control sys-

tem supports:

• named branches,

• a merge facility,

• and a hook which allows external control

over commits to a repository.

cat >> /srv/hg/helloworld/.hg/hgrc << EOF
[hooks]
pretxnchangegroup = /srv/commithook.lua hg /srv/hg/helloworld 2
EOF

Democratic File Revision Controlwith LiquidFeedback

Source code 4.2: Shell code to generate a commit hook handler for a Mercurial repository



The Liquid Democracy Journal30 issue 4

V.8. Using the system

It is assumed, that the users of the repository

have already checked out a local copy of the re-

pository.

V.8.a. Creating an initiative in LiquidFeed-

back

To commit changesets to a repository con-

trolled by LiquidFeedback as described before,

a user must first create an initiative in the unit

corresponding to the repository:

• open the appropriate area in the Liquid-

Feedback unit corresponding to the repos-

itory for which the changeset is intended,

• start a new initiative,

• enter a meaningful title for the changes,

• enter a draft describing the changes and

reasoning them,

• actually create the initiative by publishing

it.

V.8.b. Committing changesets

To associate changesets to the initiative cre-

ated in LiquidFeedback, a user must mark

them appropriately with a branch name in the

following format, where <ID of initiative> is to

be replaced with the numeric ID of the initiat-

ive:

i<ID of initiative>

As long as this initiative is in admission or dis-

cussion phase and the user is still initiator of

the initiative, the user is allowed to push fur-

ther changesets for this branch.

V.8.c. Committing changesets using Git

The user needs to mark the leading head ofthe

changesets to be associated with the Liquid-

Feedback initiative as Git branch with the cor-

responding name, e.g. i123 for the initiative

with the ID 123.

git branch i123

git checkout i123

The user can switch to different branches (as-

sociated with different LiquidFeedback initiat-

ives) :

git checkout i78

The user may push changes to the server re-

pository, as long as all initiatives affected by

the push request are still in admission or dis-

cussion phase:

git push origin

V.8.d. Committing changesets using Mer-

curial

The user needs to mark all changesets to be as-

sociated with the LiquidFeedback initiative as

Mercurial branch with the corresponding

name, e.g. i123 for the initiative with the ID 123.

hg branch i123

Democratic File Revision Controlwith LiquidFeedback



31The Liquid Democracy Journalissue 4

Democratic File Revision Controlwith LiquidFeedback

Figure 10: Screenshot ofinitiative “i3”winning over initiative “i2” in LiquidFeedback's frontend

Figure 11: Screenshot ofHgWeb, where branch “i3” is merged with the “default” (master) branch



The Liquid Democracy Journal32 issue 4

Democratic File Revision Controlwith LiquidFeedback

Figure 12: Screenshot ofinitiative “i6” in discussion with competing initiative “i5” in LiquidFeedback's frontend

Figure 13: Screenshot ofHgWeb, where “i6” has been forked from “i5”



33The Liquid Democracy Journalissue 4

Democratic File Revision Controlwith LiquidFeedback

Figure 14: Screenshot ofHgWeb, where branch “i6” has been merged with the “default” (master) branch

(along with the concurrent branch “i4” )



The Liquid Democracy Journal34 issue 4

The user can switch to different branches (as-

sociated with different LiquidFeedback initiat-

ives) :

hg up i78

The user may push changes to the server re-

pository, as long as all initiatives affected by

the push request are still in admission or dis-

cussion phase:

hg push --new-branch

V.8.e. Committing changesets using other

revision control systems

For other revision control systems, the features

corresponding to the features described for Git

and Mercurial above should be used to accom-

plish these tasks.

V.8.f. Providing links to changesets associ-

ated with an initiative

For any LiquidFeedback initiative which has

associated changesets, links to the correspond-

ing views of the revision control system's fron-

tend will be provided in LiquidFeedback to al-

low direct access by the user.

V.8.g. Commit changesets associated with

winning initiatives

As soon as an initiative has been declared as

winner by LiquidFeedback, the corresponding

changesets will be applied automatically to the

trunk or master branch ofthe repository if it is

applicable without merge conflicts.

V.9. A cherry on top:

adding Wiki functionality

It is possible to build a Wiki functionality on

top of the setup described in the previous sub-

sections. To demonstrate this, a repository

may hold a file per Wiki page containing the

content of this page (formatted with Mark-

down2) . The following source code can then be

run after each merge of a branch with the

trunk or master branch ofthe repository:

See Source  code  5.1

Furthermore, a HTML template file needs to be

placed in the root of the repository. In this file,

the place to put the rendered content of each

page has to be marked with the string “$con-

tent$” in a separate line:

See Source  code  5.2

The source code of the Wiki engine must be

executed as follows, assuming it is placed in

the directory /srv/ (<repository path> has to be

replaced by the path to the repository contain-

ing the Markdown2 formatted files while <tar-

get path> needs to be replaced by a path to

store the created HTML pages, which could be

served by an HTTP web server) :

/srv/wikify.lua <repository path> …

<target path>

Unusual for a Wiki, editing of pages is carried

out by editing files and committing the

changesets to a repository. But this approach is

only a proof of concept and could be extended

Democratic File Revision Controlwith LiquidFeedback



35The Liquid Democracy Journalissue 4

to create an integrated (democratic) Wiki user

interface. It would also be possible to use other

parser engines to support different types of

formatting languages. Even the integration of

a comfortable WYSIWYG text editor is think-

able.

Democratic File Revision Controlwith LiquidFeedback

Figure 15: Screenshot ofan example built with the described wiki functionality



The Liquid Democracy Journal36 issue 4

#!/usr/bin/lua

local wikiparser = "/usr/bin/markdown2 -s escape"
local source_dir, target_dir = ...

local pages = {}
os.execute("rm -f " .. target_dir .. "/*.html")
local template_fh = io.open(source_dir .. "/template.html")
local template = template_fh:read("*a")
template_fh:close()
local function render(content, basename)

local tmp = template:gsub("(\r?\n) *($content$) *(\r?\n)", function(m1, m2, m3)
return m1 .. content .. m3

end)
if basename then

tmp = tmp:gsub("$page%$", basename)
end
return tmp

end
for filename in io.popen("ls " .. source_dir .. "/lemma"):lines() do

print("Processing " .. filename)
local basename = string.match(filename, "^([a-zA-Z0-9_.-]+)%.markdown$")
if not basename then

print("ignoring " .. filename)
else

table.insert(pages, basename)
local content_fh = io.popen(wikiparser .. " " .. source_dir .. "/lemma/" .. filename)
local content = content_fh:read("*a")
content = content:gsub("%[([a-zA-Z0-9_.-]+)%]", '<a href="%1.html">%1</a>')
content_fh:close()
local page_fh = io.open(target_dir .. "/" .. basename .. ".html", "w")
page_fh:write(render(content, basename))
page_fh:close()

end
end
local index_parts = {}
table.insert(index_parts, "<h2>List of lemmata</h2>")
table.insert(index_parts, "<ul>")
for i, page in ipairs(pages) do

table.insert(index_parts, '<li><a href="' .. page .. '.html">' .. page .. '</a></li>')
end
table.insert(index_parts, "</ul>")
local index = table.concat(index_parts)
local index_fh = io.open(target_dir .. "/all_lemmata.html", "w")
index_fh:write(render(index))
index_fh:close()
os.execute("rm -f " .. target_dir .. "/files/*")
for filename in io.popen("ls " .. source_dir .. "/files"):lines() do

if string.match(filename, "^([a-zA-Z0-9_.-]+)$") then
os.execute(

"cp " .. source_dir .. "/files/" .. filename .. " " .. target_dir .. "/files/"
)

end
end

Source code 5.1: A minimalistic wiki engine for use with lf4rcs

Democratic File Revision Controlwith LiquidFeedback



37The Liquid Democracy Journalissue 4

<!DOCTYPE HTML>
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Wiki driven by lf4rcs using LiquidFeedback and a repository</title>
<style>

.head { background-color: #0ca; padding: 5px; }

.head .logo { font-size: 200%; font-weight: bold; }

.content { font-family: sans-serif; margin-top: 3ex; }

.edit { border-top: solid 10px #0ca; clear: right; }
img[alt=w400] { width: 400px; float: right; }

</style>
</head>
<body>

<div class="head">
<span class="logo">Wiki on Fruits</span> <a href="index.html">Home</a>

</div>
<div class="content">

$content$
</div>
<div class="edit">

<p><a href="/revision-control/lf3/unit/show/1.html?mode=timeline">
Decision history (LiquidFeedback)

</a> |
<a href="/revision-control/hg/fruit-wiki/log/tip/$page$">

Lemma revision history (repository)
</a></p>

<p>This wiki is edited democratically using a revision control system with
<a href="http://liquidfeedback.org/">LiquidFeedback</a>.

The participants are deciding together about which changes are made.
Background information on the technology used is available in a

<a href="http://www.interaktive-demokratie.org/XXX/">
news release of Interaktive Demokratie</a>.</p>

<p>For accreditation, please contact Interaktive Demokratie by email.
Accredited participants can request changes to this or other pages, or request
to create new pages. To do so, checkout the wiki's repository:</p>

<code>hg clone http://dev.liquidfeedback.org/revision-control/hg/fruit-wiki</code>
<p>Create an initiative in the correct

<a href="/revision-control/lf3/unit/show/1.html">
LiquidFeedback unit</a>

and create a new corresponding branch in the repository, e.g. if the
initiative ID is 123, execute:</p>

<code>hg branch i123</code>
<p>Make your changes and commit them in one or multiple changesets:</p>
<code>hg commit -m 'Created Apple and Banana lemma'</code>
<p>Push your changes to the server repository:</p>
<code>hg push</code>
<p>Advertise your LiquidFeedback initiative and wait for it to win. ;) If so,

your changes will be applied to the trunk and the wiki pages will be updated
accordingly.</p>

</div>
</body>

</html>

Source code 5.2: A minimalistic template for the minimalistic wiki engine for use with lf4rcs

Democratic File Revision Controlwith LiquidFeedback



The Liquid Democracy Journal38 issue 4

VI. Conclusion

VI.1. Democratic file revision control is

possible

Revision control of files held in a repository

can be done collectively in a democratic way.

An approach to extend the already existing

software LiquidFeedback to utilize its unique

proposition development and decision making

process for that purpose has been shown.

VI.1.a. Eliminate privileged moderators

The described approach can be used to get rid

of the need of privileged persons moderating

the process of incorporating changes and con-

trolling the write-access to the repository.

VI.1.b. Increase decision quality by finding

specialists for decisions

Instead, the idea of Liquid Democracy can be

used to dynamically delegate votes based on

subject areas and issues to find experts which

are specialists for these subject areas or issues

and able to make decisions with a higher qual-

ity than the average user would be able to.

VI.1.c. Potential ofquality increase

The described approach has the potential to

drastically increase the quality of incorporated

changesets to files created collectively by larger

groups. Therefore, projects making use of the

described approach could increase their overall

output quality.

VI.2. Affected fields

Any use ofrevision control systems to coordin-

ate the work ofmultiple persons (e.g. authors)

is from a technical point of view exactly the

same. It is controlling versions and tracking

changes offiles held in a repository. Therefore,

it can be deduced that the mechanisms shown

in this paper are applicable to any possible use

case ofrevision control systems.

VI.2.a. Application fields already using re-

vision control systems

Revision control systems are used e.g. for

• software development,

• configuration management,

• article, book, etc. writing,

• construction and engineering,

• scientific purposes,

• business purposes,

• art and design, and

• media.

This incomplete list of actual use cases of revi-

sion control systems shows that the described

approach opens a very wide range of new ap-

plication fields of LiquidFeedback and its pro-

position development and decision making

process.

VI.2.b. Applications in democratic context

At the same time, new application fields for re-

vision control systems are opened in contexts

which did not allow use ofsuch systems before,

because the final control needs to be executed

democratically.

Democratic File Revision Controlwith LiquidFeedback



39The Liquid Democracy Journalissue 4

VI.2.c. New application fields created by

synergistic effects

It is possible to create complete new applica-

tion fields, based on the synergistic effects of

using LiquidFeedback's proposition develop-

ment and decision making process to control

revisions offiles in a repository.

It has already been proposed to use revision

control systems in the context of tracking gov-

ernmental resources. [Simmons]

VI.2.d. Applications integrating aspects of

revision control, e.g. Wiki, MediaWiki and

Wikipedia

There are more application fields where as-

pects of revision control systems are integ-

rated in software systems while normal users

are sometimes not even aware ofit.

Famous examples are the hundreds of existing

Wiki systems, most famously the MediaWiki

used by the Wikipedia, which is edited by

thousands ofauthors. Such systems are using a

revision control system to track changesets

and the current version of the documents

presented by the Wiki system.

But in conflict situations, edit wars may arise

and then the platform administrators need to

“lock down” the article and review all changes

manually and decide about them eventually. To

get rid of this problem, the described approach

can also be adopted by Wikis, allowing them to

organize their internal processes in a more

democratic way.

Therefore, the described approach is also a

prototype, how infrastructure platforms like

the Wikipedia could be further democratized.

VI.3. Prospects

VI.3.a. Further extending the approach

The presented approach will be incorporated

into the official software package of Liquid-

Feedback Frontend [Frontend] , which is main-

tained by the Public Software Group [PSG] . It

is possible to further extend this approach by

using LiquidFeedback for a more fine-graded

control of a repository, e.g. to limit changesets

to certain modules, directory and/or file name

patterns, or other applicable criteria depend-

ing on the area and/or the policy chosen for the

issue. It is also thinkable to associate change-

sets with suggestions. Furthermore, it is pos-

sible to integrate a complete visualization of

the information and meta information held by

repositories in LiquidFeedback.

Deeper integration can be achieved by allow-

ing modification of the files of a repository

branch directly in LiquidFeedback (e.g. integ-

rating a WYSIWYG text editor or other file ed-

itors) and automatically generate changesets

representing the changes made to the files and

associate them with LiquidFeedback initiat-

ives. Combining this with a sophisticated Wiki

engine rendering the files held in the trunk or

master branch of a repository would provide a

fully integrated and complete democratic de-

velopment and publishing platform for generic

use in different fields ofapplication.

Democratic File Revision Controlwith LiquidFeedback



The Liquid Democracy Journal40 issue 4

VI.3.b. Meta level

On the meta level, this paper also shows that

LiquidFeedback's proposition development

and decision making process is not limited to

conventional democratic decisions in parties

and other organizations, but it can also be ad-

opted to completely different application

fields. This should endorse examination of

other electronic systems, which are used by a

larger group of people, regarding how to take

advantage of LiquidFeedback's proposition de-

velopment and decision making process.

VI.3.c. Social impact

As with any technological change, the broader

use of LiquidFeedback in the context of revi-

sion control and other application fields has to

go along with a cultural adoption of the new

technology.

The presented approach allows to collectively

organize any type ofdata related work which is

carried out by a larger group ofpeople without

the need ofamoderator or a decision hierarchy.

Companies, organizations, and voluntary pro-

jects can rethink their organizational scheme

to master the challenges of the digital revolu-

tion, to set free the wisdom and abilities of

their workers, and to benefit from reduced

overhead. Therefore, the details of application

in different fields and the consequences for

companies and organizational structures but

also for the working people needs further re-

search and discussion in different scientific

fields.

________

[Apache] The “Apache HTTP Server (‘httpd’)” (web server) by The Apache Software Foundation. Website http://httpd.apache.org/

(interactive)

[ArchLinux] The “Arch Linux”Linux distribution. Website https://www.archlinux.org/ (interactive)

[Core] Software “LiquidFeedback Core”. Website http://www.public-software-group.org/liquid_feedback_core

[Debian] The “Debian”operating system. Website https://www.debian.org/ (interactive)

[Evolution] Jan Behrens: The Evolution ofProportional Representation in LiquidFeedback. In “The Liquid Democracy Journal on

electronic participation, collective moderation, and voting systems”, Issue 1 (2014-03-20). ISSN 2198-9532. Published by Interaktive

Demokratie e. V.

[FreeBSD] The “FreeBSD”operating system. Website https://www.freebsd.org/ (interactive)

[Frontend] Software “LiquidFeedback Frontend”. Website http://www.public-software-group.org/liquid_feedback_frontend

[Git] The “Git”ditributed revision control system. Website https://git-scm.com/ (interactive)

[GitWeb] Software component “GitWeb”ofthe ‘Git’ revision control system, see

https://git-scm.com/book/en/v1/Git-on-the-Server-GitWeb

Democratic File Revision Controlwith LiquidFeedback



41The Liquid Democracy Journalissue 4

Democratic File Revision Controlwith LiquidFeedback

[git-http-backend] Software component “git-http-backend”ofthe ‘Git’ revision control system, see

http://git-scm.com/docs/git-http-backend

[HgWeb] Software component “HgWeb”ofthe ‘Mercurial’ revision control system, see

https://mercurial.selenic.com/wiki/PublishingRepositories?action=recall&rev=192#hgweb_-_introduction_and_prerequisites

[IAD] Association “Interaktive Demokratie e.   V.”, Berlin, Germany, an association founded by the inventors ofLiquidFeedback. Website

http://www.interaktive-demokratie.org/ (interactive)

[LDJournal] “The Liquid Democracy Journal on electronic participation, collective moderation, and voting systems”. ISSN 2198-9532.

Published by Interaktive Demokratie e. V. , available at http://www.liquid-democracy-journal.org/

[LF] Project page of“LiquidFeedback”at http://www.public-software-group.org/liquid_feedback

[Lighttpd] The “Lighttpd”web server. Website http://www.lighttpd.net/ (interactive)

[liquidfeedback.org] Website http://liquidfeedback.org/ (interactive)

[Lua] The programming language “Lua”. Website http://www.lua.org/ (interactive)

[Markdown2] Python implementation “markdown2”ofthe ‘Markdown’ markup language. Website

https://github.com/trentm/python-markdown2 (interactive)

[MediaWiki] The “MediaWiki”wiki system, written in PHP. Website https://www.mediawiki.org/wiki/MediaWiki (interactive)

[Mercurial] The “Mercurial”distributed source control management system. Website https://mercurial.selenic.com/ (interactive)

[Moonbridge] The “Moonbridge Network Server for Lua Applications”. Website http://www.public-software-group.org/moonbridge

[PLF] Behrens, Kistner, Nitsche, Swierczek: “The Principles ofLiquidFeedback”. ISBN 978-3-00-044795-2. Published January 2014 by

Interaktive Demokratie e. V. , available at http://principles. liquidfeedback.org/

[PSG] Association “Public Software Group e.   V.”, Berlin, Germany, publisher and copyright holder ofLiquidFeedback. Website

http://www.public-software-group.org/ (interactive)

[PostgreSQL] The “PostgreSQL”object-relational database system. Website http://www.postgresql.org/ (interactive)

[Roundup] http://sourceforge.net/p/roundup/code/commit_browser as ofJuly 26, 2015

[Schulze] Markus Schulze: “A New Monotonic, Clone-Independent, Reversal Symmetric, and Condorcet-Consistent Single-Winner

Election Method, draft, May 19, 2014”. http://m-schulze.9mail.de/schulze1.pdf

[Simmons] Shannon N. Simmons, Justin M. Grimes, Elizabeth M. Bonsignore: “Tracking ‘Change’: The Importance ofApplying Version

Control to Government Resources”, issue date Feburary 8, 2009, published on April 3, 2010 on the Illinois Digital Environment for Access

to Learning and Scholarship (IDEALS). http://hdl.handle.net/2142/15325

[Subversion] The “Apache Subversion”version control system. Website http://subversion.apache.org/ (interactive)

[TieBreaker] Jan Behrens: Search for a Tie-breaker. In “The Liquid Democracy Journal on electronic participation, collective moderation,

and voting systems”, Issue  2 (2014-10-07). ISSN 2198-9532. Published by Interaktive Demokratie e. V. , available at

http://www.liquid-democracy-journal.org/issue/2/The_Liquid_Democracy_Journal-Issue002-05-Search_for_a_Tie-breaker.html

[Torvalds] http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git as ofJuly 26, 2015

[WebMCP] The “WebMCP”web application framework. Website http://www.public-software-group.org/webmcp

[Wikipedia] The free online-encyclopedia “Wikipedia”. Website https://www.wikipedia.org/ (interactive)

[Wikipedia2] https://en.wikipedia.org/w/index.php?title=Wikipedia&action=history as ofJuly 26, 2015

[Wunstorf] https://wunstorf-direkt.de/lf/ as ofJuly 26, 2015



The Liquid Democracy Journal42 issue 4

LiquidFeedback's proposition development

and decision making system has been de-

signed with the goal of allowing a huge num-

ber of participants to take part in a structured

discussion process and to make decisions

without the need for a moderator or request

commission with special privileges, [PLF]

[QA1, question  6] and LiquidFeedback has

already been successfully used with several

thousand participants in the context ofa polit-

ical party. [Kling] Nevertheless, theoretic con-

siderations in the past revealed that the Li-

quidFeedback proposition development and

decision making process does not scale where

the number of participants grows ad infin-

itum. [Evolution, p.33, p.40] While these limit-

ations have been of theoretic nature without

any effect on real life scenarios (to the know-

ledge of the authors of this article) , future ap-

plications of the LiquidFeedback process in

bigger scenarios might create practical implic-

ations of these shortcomings. Therefore, we

want to present a modification of the Liquid-

Feedback proposition development process to

allow for a potentially unlimited number of

active participants while keeping the system

usable and ensuring that minorities can still

present their positions in an appropriate way.

Previous work

When we consider the “discourse space” in

real-life discussions, we are faced with its lim-

itations regarding space and time: space in re-

gards to how many people fit in a room or con-

ference hall, for example, and time in regards

to how much time the discussion takes for

everyone to contribute their point of view

(while the other participants should be listen-

ing) . Using electronic media as discourse

space, it seems like we can completely over-

come the limits of the discourse space in the

digital world, because an internet-based sys-

tem like LiquidFeedback allows to have a huge

amount of proposals to be discussed in paral-

lel. But we demand from a truly democratic

system that every participant should have the

ability to directly influence every decision

made, even if Liquid Democracy and thus Li-

quidFeedback does allow for a division of labor

A Finite Discourse Space

for an Infinite Number of Participants

by Jan Behrens, Andreas Nitsche, Björn Swierczek, Berlin, July 28, 2015



43The Liquid Democracy Journalissue 4

among the participants. This being said, and

considering that the participants have only

limited resources regarding their engagement

in the system, it is still necessary to employ al-

gorithms which relieve the participants from

the need to deal with an unlimited number of

proposals and instead allow the participants to

focus on the most important issues without

risking to abstain from a decision due to acci-

dent or overload.

It is noteworthy that a simple limit ofthe num-

ber of proposals posted by a single person in a

given time frame (which is one ofthe measures

currently implemented by LiquidFeedback)

cannot limit the number ofproposals posted in

a given time in the system if we assume that

the number of participants shall be allowed to

grow ad infinitum (which is the presumption

ofthis article) . [Evolution, p.33, p.40]

For our further considerations, we shall first

have a look at the LiquidFeedback process for

proposition development and decision mak-

ing: See Figure 1

Each issue in LiquidFeedback (which may con-

sist of one or more competing proposals,

which are called initiatives) can pass the four

phases. In admission phase, at least one initi-

ative in an issue must reach a given quorum of

supporters (first quorum) in order to proceed

to discussion phase. In order to avoid vote-

splitting or tactical considerations, each parti-

cipant may support as many initiatives as one

wants to. The first quorum is intended to re-

duce the potential workload of the other parti-

cipants by discussing only matters that are at

least demanded by a given fraction of parti-

cipants. Despite this first quorum, the number

of proposals in discussion phase could unfor-

tunately grow beyond any limit if we assume

that a minority of a size bigger than the first

quorum might keep supporting more and

more initiatives.

Furthermore, the number of issues in admis-

sion phase is not reduced by this quorum at all

since the first quorum can only reduce the

number of issues in discussion, verification,

and voting phase. As we still want minorities

admission

e.g. 4 weeks

discussion

e.g. 8 weeks

verification

e.g. 4 weeks

voting

e.g. 4 weeks

1st quorum

issue

2nd quorum

each initiative

Figure 1: The four phases ofLiquidFeedback's proposition development and decision making process

A Finite Discourse Space for an Infinite Number of Participants



The Liquid Democracy Journal44 issue 4

smaller than the first quorum to be able to put

up their proposals for discussion (either in ad-

mission phase or as competing initiatives in

existing issues which have passed the first

quorum), LiquidFeedback employs sophistic-

ated algorithms to ensure that minorities get a

fair display position within the list of issues in

admission phase (“Proportional Runoff” al-

gorithm) and the list of initiatives within an is-

sue (“Harmonic Weighting” algorithm). By as-

signing display positions in a proportional

fashion, these algorithms ensure that minority

viewpoints cannot be drowned by noisy minor-

ities (or majorities) which support a huge

number ofother initiatives.

The algorithms are explained in detail in the

book “The Principles of LiquidFeedback” [PLF]

and also in the article “The Evolution of Pro-

portional Representation in LiquidFeedback”

[Evolution] . A numeric example is given in Ap-

pendix A and B of[PLF] .

Using these algorithms for a proportional rep-

resentation, LiquidFeedback ensures that all

minorities can put up their point of view for

discussion and will get a fair display position,

hence a fair chance to campaign for their posi-

tion within the system, even under the condi-

tion of noisy minorities being present, who

post a potentially unlimited number of other

viewpoints. A short proof regarding the Har-

monic Weighting algorithm can be found in

[PLF, p.78] .

While it is up to the participants to deal or not

to deal with any issues in the admission phase

(the only consequence of not dealing with an

issue in admission phase is that it could be

canceled and not be voted upon) , participants

must be more cautious with issues that have

proceeded to discussion phase. In discussion

phase, each issue is of importance because it

may progress to voting phase and can result in

an actual decision being made. Therefore, the

“Proportional Runoff” algorithm is not applied

for sorting issues that are in discussion, veri-

fication, or voting phase. [PLF, subsection  4.10.3]

[Evolution] LiquidFeedback instead relies on

the first and second supporter quorum to limit

the potential workload ofthe participants.

In the following two sections we shall have a

look at the effect of the first and second sup-

porter quorum.

First quorum (as ofLiquidFeedback  3.0)

As already mentioned in this article and as

noted in [Evolution] , the simple mechanism of

a first supporter quorum does not prevent a

discussion system to be flooded with a poten-

tially unlimited number ofproposals under the

assumption that the number of participants

grows without bound. To give an example: if

the first supporter quorum is set to 10%, a

minority of the size of 11% of the participants

could flood the system with a potentially un-

limited number ofproposals. This even holds if

each participant is limited in regards to the

number ofproposals he or she may post within

a given time frame, assuming the total number

of participants is not limited. Since any issue

that is admitted for discussion phase requires

attention of the participants, we can conclude

that the mechanism of the first supporter

A Finite Discourse Space for an Infinite Number of Participants



45The Liquid Democracy Journalissue 4

quorum does not scale if the number of parti-

cipants grows ad infinitum.

Second quorum (as ofLiquidFeedback  3.0)

The second quorum filters those alternative

proposals, which do not have enough support-

ers at the beginning of the final voting phase.

If an initiative doesn't have enough support-

ers, it will not be eligible for final voting. Here

as well as in regards to the first quorum, it is

possible for each participant to support as

many alternative initiatives as he or she de-

sires. (This is necessary to fulfill the Independ-

ence of Clones criterion.) [PLF, p.74, p.87] The

second supporter quorum filters the number

of issues and initiatives but also does (like the

first supporter quorum) not impose a hard

limit on the number of proposals. Therefore, a

potentially unlimited number of alternative

initiatives could enter the voting procedure

hence appear on the ballot during voting. Con-

sidering appropriate changes to the user inter-

face, this is not a real problem because the

most relevant proposals will be listed first on

the virtual ballot due to the Harmonic Weight-

ing algorithm. A user interface might offer to

disapprove a potentially unlimited number of

alternative proposals in bulk. Minorities' rights

would not be affected, because the Harmonic

Weighting algorithm respects minorities in a

proportional fashion when determining their

display position on the ballot.

Scalability ofLiquidFeedback  3.0

While the algorithms employed by LiquidFeed-

back successfully scaled for several thousand

participants, it has been shown that the mech-

anism of the first supporter quorum does not

necessarily scale if the number of participants

grows ad infinitum. In the remainder of this

article, we will propose a way to modify the

mechanism of the first supporter quorum in

such way that the proposition development

and decision making process of LiquidFeed-

back also scales in cases where the number of

participants grows beyond any previous limit.

Proportional representation and free-riding

An early proposal to solve the described limita-

tion of scalability (in regards to the first sup-

porter quorum) has already been outlined in

[Evolution] : “One possible approach […] is to

not limit the number ofproposals that are pos-

ted by each participant, but instead to limit the

number of proposals that are allowed to pro-

ceed from admission phase to discussion phase

for each subject area within a given time frame.

In regard of the issues that are allowed to pro-

ceed, the limitation mechanism would need to

provide a proportional representation of the

participants. The development of such an al-

gorithm may be interesting for future versions

of LiquidFeedback and other electronic parti-

cipation systems.” Jan Behrens, author of that

article and co-author of this article, thus de-

manded that any system which limits the num-

ber of issues proceeding from admission phase

to discussion phase (previously limited by the

first quorum as explained above) must ensure a

proportional representation ofthe participants.

While proportional representation is a desir-

able property to support minorities with dis-

A Finite Discourse Space for an Infinite Number of Participants



The Liquid Democracy Journal46 issue 4

playing their viewpoints, it has to be noted that

proportional representation comes at the price

of encouraging tactical maneuvers known as

“free-riding”. [Evolution] Proportional repres-

entation in regards to admitting proposals for

further discussion means that 10% ofthe parti-

cipants may put up to 10% of proposals to dis-

cussion in a given time frame. While this

sounds fair at a first glance, a deeper look re-

veals a problem: if a group may only put a lim-

ited number of proposals to discussion with

their voting weight, it is advisable for that

group to only vote for (i.e. support) those pro-

posals which really need additional voting

weight in order to be admitted for further dis-

cussion. In other words: “If enough other

people support X, then I won't support X even

if I want X to be admitted for further discus-

sion, because not supporting X increases the

number ofother proposals I may promote suc-

cessfully.” In the context of Single Transfer-

rable Vote systems, this effect is also known as

“Hylland free-riding”. [Hylland, p.150-151]

[Schulze2] Numerous attempts have been

made to avoid free-riding in proportional rep-

resentation voting schemes, most notably a

counting scheme known as “Schulze STV” in-

vented by Markus Schulze (who also invented

the “Schulze method”) .* However, while

Markus Schulze shows that “Schulze STV” re-

duces the ability ofHylland free-riding (as well

as vote management) to a minimum, he notes

that the problem ofHylland free-riding cannot

be solved completely if a proportional repres-

entation is desired:

»We introduced a mathematical concept to

describe Hylland free riding and vote ma-

nagement […] and introduced an STV method […]

where the vulnerability to these strategies is mini-

mized (i.e. methods that are vulnerable to these stra-

tegies only in those cases in which otherwise Droop

proportionality would have to be violated).«

[Schulze2, p.50]

We may assume that it is also not possible for

the LiquidFeedback proposition development

process to limit the number of issues being ad-

mitted for further discussion while respecting

the support of the participants in a propor-

tional manner and at the same time avoiding

the problem offree-riding.**

Trade-off

If proportional representation and avoiding

the ability of free-riding are mutually exclus-

ive, then we must weigh the impact of sacrifi-

cing either one.

Sacrificing proportional representation in re-

gards to which issues are admitted for further

discussion in LiquidFeedback appears to be a

violation of LiquidFeedback's goal to protect

minorities. However, even if a minority (or

majority) could keep another smaller minority

________

* “Schulze STV”and the “Schulze method”are two distinct vote counting schemes. The first is creating a proportional representation ofthe

voters by electing a number ofcandidates, and the second is a single-winner election method.

** A formal prooftransferring the statement from the domain ofSingle Transferable Voting systems (STV) to the domain ofLiquidFeed-

back's proposition development and decision making system is still outstanding.

A Finite Discourse Space for an Infinite Number of Participants



47The Liquid Democracy Journalissue 4

from having their supported proposals admit-

ted for further discussion (beyond admission

phase) , minorities could still put up their

points of view to discussion in admission

phase. Any participant may post an initiative

which is at least discussed during the admis-

sion phase, which is then sorted using the Pro-

portional Runoff algorithm. Because compet-

ing initiatives pass the four  phases together,

any participant may also post alternative views

to those initiatives which have proceeded for

further discussion (and may later proceed to

verification and voting phase) . These alternat-

ive views are sorted using the Harmonic

Weighting within each issue, hence ensuring

that each minority may put up their opinion to

be displayed as prominent as the size of the

minority suggests. Every minority still gains

proportional representation in each issue, and

even new issues (i.e. initiatives that are not

competing with any other existent initiative)

can be put up for discussion by minorities at

least in the admission phase.

Provoking free-riding, to the contrary, results

in an unequal treatment of the voters. Those

voters who honestly support all the proposals

they want to vote upon would be punished for

expressing their true wishes. Voters who sup-

port proposals in a strategic way gain advant-

ages. Unless the supporter votes were cast hid-

den (which is not desirable during admission

phase) , some of the participants might even

use automatic scripts (bots) to optimize their

supporter votes for admitting initiatives for fi-

nal voting. [GoD] This would certainly violate

democratic standards. While advantages

through tactical behavior can never be out-

ruled completely, LiquidFeedback aims to re-

duce the possibility of tactical voting. [PLF,

section  4.14] The problem of Hylland free-rid-

ing is only avoidable if we abstain from de-

manding a proportional representation of the

voters in regards to which issues are admitted

for further discussion.

These considerations in mind, we propose to

sacrifice proportional representation when

designing a process to limit the number of is-

sues being admitted for further discussion and

voting, hereby revising the concluding state-

ment in [Evolution] . This allows for a protec-

tion against free-riding techniques in regards

to which issues are allowed to progress to dis-

cussion phase. Proportional representation

will still be applied when sorting issues in ad-

mission phase as well as for sorting initiatives

within an issue (as already implemented since

LiquidFeedback  2.2 and explained in [PLF] ) .

The minorities' rights to adequately present

their proposals within the proposition devel-

opment and decision making process is thus

still warranted.

A simple solution

Because proportional representation is not a

goal when limiting the number of issues (for

the reasons explained above) , an algorithm to

limit the number of issues that are in discus-

sion, verification, or voting phase in Liquid-

Feedback is easy to design: a simple solution to

this problem is to dynamically adjust the first

quorum depending on the number of issues

currently open in discussion, verification, and

voting phase. As the number of issues in those

A Finite Discourse Space for an Infinite Number of Participants



The Liquid Democracy Journal48 issue 4

phases increases, the first supporter quorum

would increase as well, hence leading to an

equilibrium where the number of open issues

in the system does not grow infinitely.

The algorithm in detail

Assuming the reader is familiar with all con-

cepts presented in [PLF, chapter  4] , we propose

a modification to the LiquidFeedback process

as follows. The first supporter quorum will be

dynamically determined based on the number

of issues currently in discussion, verification,

and voting phase (i.e. the number of open is-

sues that are neither closed nor in admission

phase) . As explained in the next section (“Di-

mensions of the discourse space”) , the al-

gorithm may be applied per subject area, per

policy (selected rules of procedure) , per organ-

izational unit, or a combination thereof. We

define ‘N’ as the number of issues currently in

discussion, verification, or voting phase.

The first quorum Q  1 then calculates as follows:

See Figure 2

An example is given in the following Figure  3:

See Figure 3

An issue may proceed from admission phase to

discussion phase if (a) the issue has spent a

minimum time ofTmin in admission phase, and

at the same time (b) one of its alternative initi-

atives has a supporter count (including poten-

tial supporters, see [PLF, p.61, p.67] ) of at least

Q 1 multiplied with the reference population

for that issue (see [PLF, section  4.9] for a defin-

ition of the reference population) . If multiple

issues fulfill this requirement, only that issue

that belongs to the initiative with the highest

quotient of supporters to the reference popu-

lation is proceeding to discussion phase. (The

creation time of the issues may serve as a tie-

breaker.) Afterwards the dynamic quorum

Q  dyn (and thus Q  1) is recalculated. Then, an-

other issue may pass from admission to dis-

cussion phase if the newly calculated dynamic

quorum is still reached by another initiative.

The process is repeated until no issue reaches

the dynamic quorum anymore. Finally all is-

sues which are still in admission phase and

which have been in that phase for a duration of

at least Tmax will be canceled by the system. The

whole algorithm is executed at a regular inter-

val.

The exponent β can be set to 1 to dynamically

extend the admission phase proportionally

when Q  1 is rising. This feature is intended to

compensate a rising quorum by giving minor-

ities a better chance to reach that quorum. Set-

ting β to zero, in contrast, will result in a con-

stant maximum length ofthe admission phase.

Introducing a minimum admission time Tmin

allows people who either delegate their vote in

a subject area or for the organizational unit, or

who are not member of the subject area (and

thus do not belong to the reference population

when a new issue is created) to intervene be-

fore a potentially big number of issues is ac-

cepted for entering discussion phase. Inter-

vention is possible by revoking one's delega-

tion, and/or by enlisting in a subject area or

A Finite Discourse Space for an Infinite Number of Participants



49The Liquid Democracy Journalissue 4

Q1 := max(Qpol, Qdyn)

(N+1) · Qnom if N < a

((N+1)−a) · 50% + (b−(N+1) ) · Qnom

b−a

Qdyn :=
((N+1)−b) · 100% + (c−(N+1) ) · 50%

c−b

∞ if N ≥ c

Tmax := T · (Q1 / Qpol)
β

Qpol a constant value defined by the used LiquidFeedback policy

(the policy's issue quorum)

a, b, c natural numbers (issue counts) with a ≤ b ≤ c

Qnom the quorum necessary to get an issue admitted to enter

discussion phase when a−1 issues are currently open in

discussion, verification, or voting phase

Tmin minimum admission time

T maximum admission time ifQ1 = Qpol

β admission phase timing exponent

{ if N ≥ a and N < b

if N ≥ b and N < c

Figure 2: Calculation ofdynamic quorum

A Finite Discourse Space for an Infinite Number of Participants



The Liquid Democracy Journal50 issue 4

declaring interest in an issue, hence increasing

the reference population (see [PLF, section  4.9] ) .

First of all, this compensates effects previously

observed in LiquidFeedback where some parti-

cipants with a high number of delegations

could instantly lift an initiative's supporter

count beyond the first quorum by simply sup-

porting an initiative of a new issue (which in-

herits any existing delegations from the sub-

ject area) . Secondly, this allows people who are

not members of the subject area to intervene

by enlisting in the subject area if they see that

the participants in that subject area flood the

system.

Dimensions ofthe discourse space

The algorithm may be applied per subject area,

per policy (selected rules of procedure) , or per

organizational unit. This choice determines

Q

100 %

50 %

30 %

10 %

0 %

50 N100

Q1

Qpol = 30%

a = 30

b = 50

c = 125

Qnom = 10%

Qdyn

Figure 3: Example ofdynamic quorum

A Finite Discourse Space for an Infinite Number of Participants



51The Liquid Democracy Journalissue 4

how ‘N’ is defined; e.g. if we apply the al-

gorithm per subject area, then ‘N’ is the num-

ber of open issues in that subject area which

are not in admission phase. Ifwe apply the al-

gorithm per policy, then ‘N’ is the number of

open issues not being in admission phase us-

ing this policy. We can also apply the algorithm

to different sets of tuples of subject areas,

policies, and/or organizational units (while for

each set ‘i’ of tuples, we define ai, bi, ci, and

Q  nom , i) . Even overlapping sets are thinkable,

in which case we should determine the highest

Q  dyn, i.e. Q  1 := max(Q  pol , max(Q  dyn , i) ) (for all

matching ‘i’) .

It is thus possible to shape the dimensions of

the discourse space. For example, an organiza-

tion might decide to generally not discuss

more than 150 issues in parallel, but also not

more than 15 issues together in the areas “Edu-

cation” and “Research”. More complex setups

are thinkable. Some organizations could use

this feature to ensure that certain kinds ofpro-

posals do not stop other kinds ofproposals be-

ing discussed and decided upon (e.g. a big

number of issues regarding amendments to

the statutes of an organization does not in-

crease the quorum for other issues) .

Vulnerability through flooding?

While it is possible that a minority keeps an-

other smaller minority from having their sup-

ported issues in admission phase proceed to

discussion phase (by simply supporting a huge

amount of initiatives in separate issues, thus

increasing the number of issues in discussion,

verification, and voting phase, and thus in-

creasing the dynamically adjusted first sup-

porter quorum), any sufficiently larger group

can still get further issues to be admitted for

discussion phase. In other words: a minority

cannot lift the required quorum much higher

than their own size. For example, a minority

consisting of 10% of the participants could de-

ter a 9% minority from discussing their issues

beyond admission phase, but those 9% could

still use the admission phase to promote their

proposals in order to gain a supporter quorum

greater than 10%, hence allowing for a final de-

cision during voting phase (after discussion

and verification phase) .

Technical challenges

LiquidFeedback currently relies on a back-

ground process, which counts the votes for

each issue, one issue after the other. In order

to provide a fair process where no issue is

favored to any other issue, all issues that may

influence each other's dynamic quorum have

to be tested for their eligibility at the same

time. Since the calculation requires some time

to compute, a snapshot must be taken of the

supporter situation ofall those issues at once.

Such behavior might be achieved by processing

all open issues in admission phase at the same

time in a single database transaction. In case

of the current implementation of LiquidFeed-

back, however, it might be problematic due to

PostgreSQL's way of locking: database locks

won't be released until the transaction has fin-

ished. Therefore, “snapshot synchronization

functions” should be utilized instead. We refer

to section  9.26.5 of the PostgreSQL manual,

A Finite Discourse Space for an Infinite Number of Participants



The Liquid Democracy Journal52 issue 4

version 9.4 for further information on this is-

sue. [PostgreSQL]

Regarding huge numbers of initiatives, a prac-

tical problem might be the non-linear (yet

polynomial) run time of the Proportional Run-

off and Harmonic Weighting algorithms. Fur-

ther research might reduce computational

complexity, or not. Either way, the practical

scaling ofsuch a system by employing methods

like clustering, etc. goes beyond the scope of

this article.

Summary

It may be surmised that it is impossible to ex-

tend LiquidFeedback with a proportional al-

gorithm to select issues that may progress

from admission to discussion phase without

the side effect of potentially favoring voters

that employ free-riding techniques to maxim-

ize their influence. We therefore proposed a

non-proportional algorithm that allows a po-

tentially unlimited number of participants to

take part in the proposition development and

decison making process while limiting the

number of open issues, so that each single in-

dividual or a small group of individuals may

still work on all issues in the system, in a sub-

ject area, or within an organizational unit.

Applying these modifications to LiquidFeed-

back would empower a potentially unlimited

number of participants to engage in a self-or-

ganized discussion process which meets

highest democratic standards while maintain-

ing feasibility even if the number of parti-

cipants grows beyond any limits.

________

[PLF] Behrens, Kistner, Nitsche, Swierczek: “The Principles ofLiquidFeedback”. ISBN 978-3-00-044795-2. Published January 2014 by

Interaktive Demokratie e.   V. , available at http://principles. liquidfeedback.org/

[QA1] Behrens, Kistner, Nitsche, Swierczek: Readers ofthe Journal Asked – LiquidFeedback Developers Answer (#1). In “The Liquid

Democracy Journal on electronic participation, collective moderation, and voting systems”, Issue  2 (2014-10-07). ISSN 2198-9532.

Published by Interaktive Demokratie e. V. , available at http://www.liquid-democracy-journal.org/issue/2/

The_Liquid_Democracy_Journal-Issue002-08-Readers_Asked_-_LiquidFeedback_Developers_Answer_001.html

[Kling] Christoph Carl Kling, Jerome Kunegis, Heinrich Hartmann, Markus Strohmaier, Steffen Staab: “Voting Behaviour and Power in

Online Democracy: A Study ofLiquidFeedback in Germany's Pirate Party”. March, 2015. Published at http://arxiv.org/abs/1503.07723v1

[Evolution] Jan Behrens: The Evolution ofProportional Representation in LiquidFeedback. In “The Liquid Democracy Journal on

electronic participation, collective moderation, and voting systems”, Issue 1 (2014-03-20). ISSN 2198-9532. Published by

Interaktive Demokratie e. V. , available at http://www.liquid-democracy-journal.org/issue/1/

The_Liquid_Democracy_Journal-Issue001-04-The_evolution_of_proportional_representation_in_LiquidFeedback.html

[Hylland] Aanund Hylland: Proportional Representation without Party Lists. In “Rationality and Institutions : Essays in honour ofKnut

Midgaard on the occasion ofhis 60th birthday, February 11, 1991”, pp. 126–153, by Raino Malnes and Arild Underda (editors).

ISBN 82-00-21623-3 (978-82-00-21623-0). Published 1992 by Universitetsforlaget AS, Oslo.

[Schulze2] Markus Schulze: “Free Riding and Vote Management under Proportional Representation by the Single Transferable Vote,

draft, March 14, 2011”. http://m-schulze.9mail.de/schulze2.pdf

[PostgreSQL] http://www.postgresql.org/docs/9.4/static/functions-admin.html#FUNCTIONS-SNAPSHOT-SYNCHRONIZATION

A Finite Discourse Space for an Infinite Number of Participants



53The Liquid Democracy Journalissue 4

In our article on Preferential Delegation and

Negative Voting Weight [PD] , we have proven

that a preferential delegation system with free

choice of delegates may not fullfill the follow-

ing 7 criteria at the same time:

• Precedence (respecting the freely chosen

preferences in trivial cases) ,

• Anonymity*,

• Neutrality,

• Consistency,

• Directionality,

• Equality ofDirect and Delegating Voters,

• No Negative Voting Weight Through Deleg-

ation.

While these 7 criteria make the proof easy to

understand, it should be noted that if we

define the absence ofnegative voting weight in

a more general way, we could further reduce

the number ofconflicting properties to the fol-

lowing 5 properties:

• Precedence (respecting the freely chosen

preferences in trivial cases) ,

• Anonymity*,

• Directionality,

• Equality ofDirect and Delegating Voters,

• No Negative Voting Weight Through Deleg-

ation.

The definition for the absence of negative vot-

ing weight, however, needs to be redefined as

follows in this case:

»If a person  A doesn't vote directly and

doesn't delegate to anyone, and if (in a bi-

nary yes/no-decision) a person  B votes via delegation

in favor ofa proposal that wins, then changing A's

behavior to delegate to B instead ofabstaining (i.e.

neither voting directly nor delegating) must not cau-

se the previously winning proposal to lose, and if

person B votes via delegation against a proposal that

loses, then changing A's behavior to delegate to B in-

stead ofabstaining must not cause the previously lo-

sing proposal to win.«

Addendum to our Theorem Regarding

Preferential Delegation and

Negative Voting Weight

by Jan Behrens, Berlin, March 28, 2015

________

* not to be confused with anonymous/secret voting, see [PLF, p.148]



The Liquid Democracy Journal54 issue 4

As already explained in the original article, the

property “Consistency” is implied by “Direc-

tionality”. Furthermore, the use of “Neutrality”

isn't necessary until Case XXVI of our original

proof.* We may therefore copy the findings re-

garding Case I through Case XXII from our

previous proofand consider 6 new cases.

For Case I through Case XXII, see [PD] . Case

XXIII through Case XXVIII will be (re)defined

as follows.

Case  I through Case  XXII

See [PD] for Case I through XXII.

Cases  XXIII to XXVIII

For Case XXIII through XXVIII see figures on

the following pages.

Contradiction

The property of “Anonymity”, however, forbids

that that “YES” wins in Case  XXVI and “NO”

wins in case XXVIII. Therefore, the 5 proper-

ties are contradictory, quod erat demon-

strandum.

This article has been published as an advance pub-

lication on March 28, 2015 at the following URL:

http://www.liquid-democracy-journal.org/

advance_publication/2015-03-28/

Addendum_to_our_Theorem_Regarding_Preferenti

al_Delegation_and_Negative_Voting_Weight.html

________

[PD] Jan Behrens &Björn Swierczek: Preferential Delegation and the Problem ofNegative VotingWeight. In “The Liquid Democracy

Journal on electronic participation, collective moderation, and voting systems, Issue 3” (2015-01-23). ISSN 2198-9532. Published by

Interaktive Demokratie e.   V. , available at http://www.liquid-democracy-journal.org/issue/3/

[PLF] Behrens, Kistner, Nitsche, Swierczek: “The Principles ofLiquidFeedback”. ISBN 978-3-00-044795-2. Published January 2014 by

Interaktive Demokratie e.   V. , available at http://principles. liquidfeedback.org/

Addendum to our Theorem Regarding Preferential Delegation and Negative Voting Weight

________

* The original proofstates on page 8 that Property 3 (Neutrality) is used implicitly until Case XXIV inclusive. This is not necessary

though, because for each case, “x”, “y”, “z
1
”, etc. are variable.



55The Liquid Democracy Journalissue 4

Case XXIII

Case  XXIII

We consider a new Case  XXIII that can be

solved by using the previously solved

Case  XXII and applying the rules ofProperty  4

(“Consistency”) .

Addendum to our Theorem Regarding Preferential Delegation and Negative Voting Weight



The Liquid Democracy Journal56 issue 4

Case XXIV

Case XXIV

We consider a new Case  XXIV that can be solved by first apply-

ing the rules ofProperty  5 (“Directivity”) to Case  XX in order to

determine all votes but one, and then, due to Property  6 (“Equal-

ity ofDirect and Delegating Voters”) , using the vote counts de-

termined in Case  XXIII to solve the last vote.

x∈ {YES, NO, ∅}

y∈ {YES, NO}

z1 ∈ {YES, NO}

z2 ∈ {YES, NO}

z3 ∈ {YES, NO}

Addendum to our Theorem Regarding Preferential Delegation and Negative Voting Weight



57The Liquid Democracy Journalissue 4

Case XXV

We consider Case  XXIV and set x=∅, y=YES, z1=YES, z2=NO, z3=NO to create a more specific

Case  XXV. The number ofYES votes outnumbers the number ofNO votes. Thus “YES” would

win here.

Case XXV

Case XXVI

We create a Case  XXVI equal to Case  XXV but with the sole difference that voter  K (who was

previously abstaining) delegates to voter  A (who was previously voting for YES through

delegation) . According to the requirement of the absence of negative voting weight through

delegation, “YES” would need to win in Case  XXVI (because it also wins in Case  XXV).

Case XXVI

Addendum to our Theorem Regarding Preferential Delegation and Negative Voting Weight



The Liquid Democracy Journal58 issue 4

Case XXVII

We consider Case  XXIV and set x=∅, y=NO, z1=NO, z2=YES, z3=YES to create a more specific

Case  XXVII. The number ofNO votes outnumbers the number ofYES votes. Thus “NO” would

win here.

Case XXVII

Case XXVIII

We create a Case  XXVIII equal to Case  XXVII but with the sole difference that voter  K (who

was previously abstaining) delegates to voter  A (who was previously voting for NO through

delegation) . According to the requirement of the absence of negative voting weight through

delegation, “NO” would need to win in Case  XXVIII (because it also wins in Case  XXVII) .

Case XXVIII

Addendum to our Theorem Regarding Preferential Delegation and Negative Voting Weight



Also published by Interaktive Demokratie e.V. :

The Principles ofLiquidFeedback

This book gives an in-depth insight into the philosophical, political and technological aspects of

decision making using the internet and the “secrets” of LiquidFeedback, a computer software

designed to empower organizations to make democratic decisions independent of physical

assemblies, giving every member of the organization an equal opportunity to participate in the

democratic process.

The inventors of LiquidFeedback explain the principles and rules of procedure developed for

LiquidFeedback providing the key features for democratic self-organization. They give a theoretical

background about collective decision making and answers to practical questions. This is a must-read

for anybody planning to make online decisions or to build online decision platforms and is also

interesting for anybody interested in the future ofdemocracy in the digital age.

More than 200 pages, including:

• detailed descriptions ofthe concepts ofLiquid Democracy

• explanation ofthe structured discussion process in LiquidFeedback, including:

• the collective moderation system

• protection ofminorities and the problem of"noisy minorities"

• preferential voting

• reasons for the design principles ofLiquidFeedback

• real-world integration into existing democratic systems

• analysis ofthe verifiability ofvoting systems

• glossary and an extensive index

• bibliographic references

• more than 20 illustrations

Order at bookstores world wide with the ISBN 978-3-00-044795-2 or at:

http://principles.liquidfeedback.org/




