
The Liquid Democracy Journal

The Liquid Democracy Journal is dedicated to the idea of Liquid Democracy,
which is a democratic principle that uses transitive delegations to unite the
best of direct and representative democracy.

But this journal is not just limited to Liquid Democracy; it also covers those
topics coming up when implementing it: electronic particatipation,
collective moderation, and voting systems.

on electronic participation,
collective moderation, and
voting systems

Issue 6
Berlin, 2018-07-27



The Liquid Democracy Journal
on electronic participation, collective moderation, and voting systems

Issue 6, Berlin 2018-07-27 (electronic version 2019-02-22)

Copyright © 2018, 2019 Interaktive Demokratie e. V.
Johannisstraße 12
10117 Berlin
Germany

http://www.interaktive-demokratie.org/

All rights reserved.

Published by: Interaktive Demokratie e. V., Berlin, Germany

Edited by: Jan Behrens
Axel Kistner
Andreas Nitsche
Björn Swierczek

Contact editors at: editors@liquid-democracy-journal.org

For unsolicited sent-in works neither the editors nor
the publisher take any responsibility.

Subscribe at: http://www.liquid-democracy-journal.org/

Archive available at: http://www.liquid-democracy-journal.org/

ISSN-L: 2198–9532
ISSN print version: 2198–9532
ISSN electronic version: 2199–1758



3The Liquid Democracy Journalissue 6

In our last issue, we wrote about “The Origins
of Liquid Democracy” mentioning Rob Lanphi-
er's assessment that verification of identity is
of such general importance for many internet ap-
plications that he expected a solution to emerge.
But almost 25 years after this assessment, iden-
tification remains one of the biggest challenges
for online decision making systems. For many,
this fact is hard to accept, and some even sug-
gest to allow non-verified voters to take part
for the sake of inclusion while trying to limit
the influence of such voters and encourage veri-
fication by assigning different voting weights.

In this issue we publish “A Mathematical View
on the Sockpuppet Problem” which was writ-
ten during the course of a scientific coopera-
tion. It contains a (rather trivial) mathematical
proof, explaining why allowing non-verified
voters is a bad idea, which was to our surprise
all but obvious to scientists of some disciplines.

Right after the publication of Issue  #5 of this
journal, the Association for Interactive Demo-
cracy joined a Digital Democracy Workshop of

the Centre for Digital Culture at King's College
London which was hosted by Newspeak House
London. Multiple stakeholder engagement
workshops in London, Milan, San Donà di
Piave and Turin have been organized.

A pre-release version of LiquidFeedback  4.0 is
part of the WeGovNow pilot platform in the
City of Turin. In this platform, LiquidFeedback
also serves as the authorization server for all
other applications, which is also aiming at
solving the general problem of voter identific-
ation on the net. Turin has been the first medi-
um scale use case for the new unified user
management with some 10,000 registrations
within the first month. Some weeks later the
City of San Donà di Piave started their WeGov-
Now platform using the new role accounts fea-
ture provided by LiquidFeedback's unified user
management. This issue of the Liquid Demo-
cracy Journal will inform about the “Unified
User Management with LiquidFeedback”.

The principal theme of this issue is the
“Roadmap to a Decentralized LiquidFeedback”

Editorial

by the Editors, Berlin, July 27, 2018



The Liquid Democracy Journal4 issue 6

Corrigendum

Editorial

using “The LiquidFeedback Blockchain”. In
this context, one article highlights the topic of
“Decentalized Accreditation” and a difficult
challenge regarding correctability of online
voting is discussed in our article “Practical
Consequences of Arrow's Theorem for Open

Electronic Voting”. Four articles and a working
prototype of the LiquidFeedback Blockchain
describe the motivation, the considerations,
the solution, and the challenges.

The Editors

In the first issue (Issue  #1) of “The Liquid
Democracy Journal on electronic participation,
collective moderation, and voting systems”, in
the article “The Evolution of Proportional Rep-
resentation” [Evolution] it was wrongly
claimed that the Harmonic Weighting al-
gorithm would allow

»any group of size P · M / (1+N) to place M initiati-
ves of a set S amongst the first N positions, if all
members of the group support all initiatives in that
set (S), and no member of the group supports an in-
itiative outside the set which gains a display position
amongst the first N positions.«

[Evolution, p.35]

For the proof, the article references to the book
“The Principles of LiquidFeedback” [PLF]. In
this book, a proof is given in the footnote on
page  78. This proof, however, only proves a
weaker statement covering

»those cases where parts of the minority support in-
itiatives that are not supported by all members of the
minority (i.e. initiatives that are not in S), as long as
those other initiatives which are supported by parts

of the minority do not gain a better display position
than [any of] the best-ranked M initiatives of S.«

[PLF, p.78] [Errata]

Furthermore, [Aziz, Example 2] shows that the
stronger statement wrongly used in our article
“The Evolution of Proportional Representa-
tion” is indeed violated by Harmonic Weight-
ing. We therefore must correct the statement
that article. Instead of
»no member of the group supports an initiative out-
side the set which gains a display position amongst
the first N positions«
read
»no member of the group supports an initiative out-
side the set which gains a better display position
than any of the best-ranked M initiatives of S«
and skip the rest of the paragraph.

The claim in our book “The Principles of Li-
quidFeedback” (with the existing [Errata]) is
correct. We would like to thank Markus Brill
from the Technische Universität Berlin for his
help and for kindly referring us to the counter-
example (Example 2 in [Aziz]).

For sources, see right page



5The Liquid Democracy Journalissue 6

Read in this Issue:

Unified User Management with LiquidFeedback
by Jan Behrens and Björn Swierczek, Berlin

Roadmap to a Decentralized LiquidFeedback
by Andreas Nitsche, Berlin

The LiquidFeedback Blockchain
by Jan Behrens, Axel Kistner, Andreas Nitsche, and Björn Swierczek, Berlin

Decentralized Accreditation
by Jan Behrens, Andreas Nitsche, and Björn Swierczek, Berlin

Practical Consequences of Arrow's Theorem
for Open Electronic Voting
by Jan Behrens, Berlin

Appendices:

A) A Mathematical View on the Sockpuppet-Problem
Facsimile, April 12, 2016

B) UWUM Work Report
Facsimile, December 12, 2016

7

13

18

30

34

39

51

________

[Aziz] Haris Azis: “A Note on Justified Representation Under the Reverse Sequential PAV rule”, working paper, 2017. Retrieved on

2018-02-18 from: http://www.cse.unsw.edu.au/~haziz/invseqpav.pdf

[Errata] “Errata as of 2016-12-22” for ‘The Principles of LiquidFeedback’. Available at: http://principles.liquidfeedback.org/errata/

[Evolution] Jan Behrens: “The Evolution of Proportional Representation in LiquidFeedback”. In “The Liquid Democracy Journal on

electronic participation, collective moderation, and voting systems”, Issue 1, March 20, 2014, pp. 32-41. ISSN 2198-9532. Published by

Interaktive Demokratie e. V., available at http://www.liquid-democracy-journal.org/issue/1/The_Liquid_Democracy_

Journal-Issue001-04-The_evolution_of_proportional_representation_in_LiquidFeedback.html

[PLF] Behrens, Kistner, Nitsche, Swierczek: “The Principles of LiquidFeedback”. ISBN 978-3-00-044795-2. Published January 2014 by

Interaktive Demokratie e. V., available at http://principles.liquidfeedback.org/



The Liquid Democracy Journal6 issue 6



7The Liquid Democracy Journalissue 6

This article will present a technology based on
the OAuth 2.0 standard to allow user identific-
ation on the internet: LiquidFeedback acts as
an identity server, and, given a proper accred-
itation process for LiquidFeedback, other
third-party software may use LiquidFeedback
to verify identities when collecting quantified

user input (single-sign-on with identity veri-
fication). This allows organizations or political
administrations to build an extensible ecosys-
tem of internet applications that are invulner-
able to the sockpuppet problem where users
create a number of (fake) internet identities to
unfairly increase the impact of their postings

or votes.

A necessary prerequisite to us-
ing this technology is a proper
accreditation process of all
participants who shall be eli-
gible to take part in the delib-
eration process. This accredita-
tion process is out of scope of
this article and will differ ac-
cording to the concrete applic-
ation scenario.

For the most part of this article,
we assume the reader is famili-
ar with single-sign-on techno-
logies as well as OAuth  2.0 as
specified in RFC 6749.

Unified User Management
with LiquidFeedback

by Jan Behrens and Björn Swierczek, Berlin, July 27, 2018

Figure 1: Login dialog of LiquidFeedback's unified user management



The Liquid Democracy Journal8 issue 6

This article is in large part based on the
UWUM Work Report [UWUM]. LiquidFeed-
back's OAuth  2.0 server support as well as the
UWUM Work Report have been contributed by
FlexiGuided  GmbH as part of the WeGovNow
project which has received funding from the
European Union's Horizon 2020 research and
innovation programme under grant agree-
ment No 693514.

Motivation

In the previous issue of The Liquid Democracy
Journal, we mentioned that a central problem
of internet participation systems had already
been stated in 1995 by Rob Lanphier: without a
verification of identities, you cannot ensure
the basic democratic principle of “one person –
one vote”. [Origins] Without that principle,
even a single person may be able to manipulate
the results of a vote. [Sockpuppet]

»The main problem facing electronic voting
on the Internet is verifying that one person

gets one vote, and that all people are represented
(even those without Internet access). Verification of
identity is a problem that plagues many applications
on the Internet (such as making purchases on the
net, or filing taxes on the net), and so this one will li-
kely be solved regardless of whether electronic voting
makes it an issue.«

Rob Lanphier, 1995
[Lanphier]

These findings cannot just be applied to elec-
tronic voting but are also valid for any other
participation solution incorporating any form
of opinion formation through counting of rat-
ings (e.g. “likes”, “+1” or “thumbs up”). Con-
sequently, it is not possible to quantify people's
opinions on the internet without verifying
their identity.

Unified User Management with LiquidFeedback

Figure 2: Use case "WeGovNow – We Government Now!" serving different applications
"under the same roof" using LiquidFeedback's Unified User Management



9The Liquid Democracy Journalissue 6

For the sake of inclusion, it has been proposed
to allow people to participate anonymously
with a reduced voting weight. Disregarding
that this is already a violation of treating each
participant equally, it can furthermore be proven
mathematically that reducing the voting
weight of anonymous participants to a fixed
(but non-zero) value cannot solve the problem
that creating a finite amount of so-called
“sockpuppets” (fake identities) is sufficient to
overrule the results of a vote. [Sockpuppet]

Lanphier was optimistic in regard to a solution
of the identification problem on the internet,
but until today (more than 20 years later),
there is no standardized way to identify
people. Many corporations are using their own
solutions for identifying people, e.g. as cus-
tomer or owner of a specific bank account,
some governments have developed electronic
identity systems for use with the internet, but
there is no generally available solution which is
practically feasible and intended to be used to
authenticate and authorize participants for
democratic participation processes using the
internet.

When talking about solutions for verifying
one's identity on the internet, we have to dis-
tinguish between:

* technologies (e.g. open source software, hard-
ware appliances, standardized protocols, etc.)

and

*their particular application (e.g. solutions
created by particular organizations or states).

In the remainder of this article, we present a
technology based on the OAuth  2.0 standard
[RFC  6749] that has been developed as part of
the EU-funded WeGovNow project and which
has been incorporated into the LiquidFeedback
software version  4.0, which is to be published
soon. Ensuring that each person has at most
one account in LiquidFeedback will automatic-
ally enable other (third-party) software to use
LiquidFeedback to identify their users and
thus avoid any problems with sockpuppets.

Existing alternatives

There are existing standards for single-sign-on
procedures on the internet, and these also al-
low user identification. As we will explain in
the following paragraphs, none of these solu-
tions have matched our needs.

The most notable standard for single-sign-on
(SSO) is the “OpenID Connect” standard. [Open-
ID] Unfortunately OpenID Connect is a rather
complex standard and requires extra implement-
ation work compared to the underlying
OAuth  2.0 standard (which is much simpler to
adopt).

Another alternative in mind was pure OAuth 2.0,
but OAuth 2.0 has been created with a different
application scenario and is out-of-the-box not
suitable to provide a secure user identification
and authentication. Lodderstedt, McGloin, and
Hunt state in [RFC  6819] (“OAuth 2.0 Threat
Model and Security Considerations”) that cli-
ents which wish to implement a user login
should rather use “an appropriate protocol”
such as OpenID or SAML instead of OAuth 2.0.

Unified User Management with LiquidFeedback



The Liquid Democracy Journal10 issue 6

Nonetheless, using OAuth 2.0 with its “Author-
ization Code Flow” can still provide a light-
weight way to create a secure authentication
and identification service. Only a few (stand-
ard compliant) extensions are necessary to al-
low applications to query the user's identity.
Similar approaches have been taken by plat-
forms such as Facebook (“Facebook Login”) but
are often tied to a particular platform and can-
not be installed in a separate realm with a se-
cure and/or application-specific accreditation
process.

Despite problems with existing solutions, it
was our intention to stick to existing standards
where appropriate. Even with necessary exten-
sions, we managed to make LiquidFeedback's
identification service to be fully compliant
with the OAuth 2.0 specification [RFC 6749].

From OAuth 2.0
to a single-sign-on solution

In order to use OAuth  2.0 as a single-sign-on
solution, LiquidFeedback takes the role of the
“authorization server” according to [RFC 6749]
while other (third-party) components can take
the role of “clients” and “resource servers”.

However, OAuth  2.0 provides different modes
of operation (e.g. the “Authorization Code
Flow” and the “Implicit Flow”) and is by itself
not sufficient for user authentication. Both the
Authorization Code Flow and the Implicit Flow
could be extended to provide user authentica-
tion and thus allow to implement a single-
sign-on (SSO) system where third-party ser-
vices on the internet can identify users. Be-

cause the Implicit Flow would require
additional security mechanisms to be imple-
mented at client side (where bad implementa-
tions result in security vulnerabilities),
[RFC  6749, subsection  10.16] LiquidFeedback
extends the Authorization Code Flow for user
identification purposes.

In short, the Access Token Response of the
OAuth  2.0 Authorization Code Flow gets ex-
tended by simply returning an additional field
“member_id” which identifies the signed-in
user. For details, refer to [UWUM].

(Dynamic) Client registration

The OAuth  2.0 standard [RFC  6749] requires a
procedure called “client registration” without
defining how this procedure is to be carried
out. In the following, we explain about the
problems that can come along with such a cli-
ent registration and how we deal with them.

Client registration means that any component
wishing to use the authorization server needs
to be known to the authorization server be-
forehand. There are a couple of well-founded
security reasons why this client registration is
necessary. [UWUM, subsection  2.4.2] Nonethe-
less, this client registration is one of the
biggest drawbacks of the OAuth  2.0 protocol:
either clients can register without manual
verification and approval by the operator of the
authorization server, in which case the security
concerns are often not fully addressed, or a
manual verification is conducted in which case
additional workload is imposed on the operat-
or of the authorization server and/or certain

Unified User Management with LiquidFeedback



11The Liquid Democracy Journalissue 6

clients might be excluded from using the au-
thorization server. Furthermore, when using
OAuth  2.0 for API authentication (which is its
original field of application), manual client re-
gistration prohibits the creation of generic cli-
ents (e.g. alternative user interfaces) which
may directly connect to any instance of a par-
ticular software installation (e.g. connect to Li-
quidFeedback instances in different municip-
alities or organizations).

The OAuth  2.0 specification [RFC  6749] does
not care about these problems at all and simply
states that client registration is out of scope of
the standard and would “typically involve end-
user interaction with an HTML registration
form”:

»Before initiating the protocol, the client re-
gisters with the authorization server. The

means through which the client registers with the
authorization server are beyond the scope of this spe-
cification but typically involve end-user interaction
with an HTML registration form.«

[RFC 6749]

This form of client registration, however, is
only suitable for a service-centered approach
where a software provides only a single service
(e.g. Facebook, Google, Twitter, etc). When
considering an open source ecosystem, we ex-
pect more than one installation of a particular
technological solution. It is therefore not suffi-
cient to register a client at a single service pro-
vider if this client shall be usable for any au-
thorization server using the same (open
source) software.

One possible solution would be the creation of
a central (i.e. world-wide) client registry. Such
a central client registry, however, could be a
single point of failure and would empower a
central authority (e.g. the Public Software
Group) to control usage of the protocol (e.g. it
would be possible to block certain clients). We
consider this approach contrary to the con-
cepts of open source and open data.

Therefore, we implemented a dynamic client
registration protocol that keeps implementa-
tional complexity at a minimum while provid-
ing good security properties. Dynamic client
registration is described in subsection  2.4.2 of
[UWUM].

Further tweaks

LiquidFeedback's OAuth  2.0 server imple-
mentation can also be used for all other pur-
poses that OAuth 2.0 may be used for. Further
improvements have been made to extend the
basic OAuth  2.0 workflow. For example, sub-
section  10.4 of [RFC  6749] suggests refresh
token rotation to provide better security prop-
erties but does not specify how old refresh
tokens are invalidated. Always revoking the old
refresh token after transmission of a new re-
fresh token can have a bad effect on system
stability, considering that transmissions might
not be processed properly by the receiver. Fur-
thermore, multiple backends of a client could
simultaneously access the OAuth  2.0 token
endpoint. Such legit accesses by two legit
backends of the same client would need to be
distinguished from accesses by a legit client
and a malicious third party who obtained a

Unified User Management with LiquidFeedback



The Liquid Democracy Journal12 issue 6

copy of a refresh token. Subsection  2.15 of
[UWUM] explains the mechnanisms employed
by LiquidFeedback to mitigate the risk of re-
fresh token abuse while solving the problems
of race conditions during refresh token rota-
tion.

Another improvement, for example, is to allow
downgrading access token scopes to allow
meta-API providers as explained in subsec-
tion 2.14 of [UWUM].

Summary

Arguably, the biggest problem with the OAu-
th 2.0 standard is that it only provides a frame-
work for authorization while keeping cruicial

details undefined such as client registration.
Those details, however, must be well-defined
in order to provide a secure yet flexible au-
thentication service.

Integrating an OAuth  2.0 server with appro-
priate extensions into LiquidFeedback auto-
matically empowers all organizations or polit-
ical administrations which use LiquidFeedback
to provide identity services to third-party ap-
plications, even those applications unknown to
the organization at time of deployment.

This project has received funding
from the European Union's
Horizon 2020 research and
innovation programme under
grant agreement No 693514.

Unified User Management with LiquidFeedback

________

[Lanphier] Rob Lanphier: “A Model for Electronic Democracy?” Published at http://robla.net/1996/steward/ (accessed 2016-04-19) and

also archived on October 27, 2005, available at http://web.archive.org/web/20051027051842/http://robla.net/1996/steward/ (accessed

2016-04-19)

[OpenID] The OpenID Connect 1.0 specification, available at: http://openid.net/connect/ (accessed 2018-02-10)

[Origins] Jan Behrens: “The Origins of Liquid Democracy”. In “The Liquid Democracy Journal on electronic participation, collective

moderation, and voting systems”, Issue 5, May 11, 2017, pp. 7-17. ISSN 2198-9532. Published by Interaktive Demokratie e. V., available at

http://www.liquid-democracy-journal.org/issue/5/The_Liquid_Democracy_Journal-Issue005-02-The_Origins_of_Liquid_

Democracy.html

[RFC 6749] D. Hardt (Ed.): “The OAuth 2.0 Authorization Framework”, October 2012. Available at: https://tools.ietf.org/html/rfc6749

[RFC 6819] Lodderstedt (Ed.), McGloin, Hunt: “OAuth 2.0 Threat Model and Security Considerations”, January 2013. Available at:

https://tools.ietf.org/html/rfc6819

[Sockpuppet] Jan Behrens: “A mathematical view on the sockpuppet problem”. April 12, 2016, published July 27, 2018 as Appendix A to

“The Liquid Democracy Journal on electronic participation, collective moderation, and voting systems”, Issue 6, July 27, 2018. ISSN 2198-

9532. Published by Interaktive Demokratie e. V.

[UWUM] Behrens, Kistner, Nitsche, Swierczek: “Work report on Unified WeGovNow User Management (UWUM) development”,

December 12, 2016. Published as Appendix 2.1.2 (pages 125-151) to the WeGovNow Deliverable D3.1 (“Consolidated System Architecture”)

available at: https://ec.europa.eu/futurium/sites/futurium/files/d3.1_693514_consolidated_system_architecture_.pdf (also included as

Appendix B to “The Liquid Democracy Journal on electronic participation, collective moderation, and voting systems”, Issue 6, July 27,

2018, pp. 39-50, ISSN 2198-9532, published by Interaktive Demokratie e. V.)



13The Liquid Democracy Journalissue 6

With LiquidFeedback published in late 2009
and the book “The Principles of LiquidFeed-
back” published in January  2014, we, the au-
thors of LiquidFeedback, presented specific
rules of procedure for a democratic process,
providing every participant with truly equal
rights to the maximum known extent while
maintaining feasibility and effectiveness also
in cases when the number of participants is
huge. [PLF, Postface] Even though recorded
votes ensure that any manipulation of the out-
come can be detected by the participants,
LiquidFeedback (as of now) still depends on a
central authority (e.g. an organization or state
administation) to host the system. With this
article, we present a roadmap for a future
LiquidFeedback that doesn't depend on a cent-
ral authority but can be operated decentralized
by any group of people who decide to do so.

The overall idea

The already existent LiquidFeedback proposi-
tion development and decision making process
allows a (previously defined) group of people to

enter a fair proposition development and de-
cision making process where each participant
gains equal rights to the maximum possible
extent. The process is suitable for a broad
range of applications such as policy making,
technical standardization, (democratic) product
development, or collaborative publications.

Currently, the correct execution of Liquid-
Feedback's rules of procedure is carried out by
a centralized server infrastructure to be oper-
ated by an organization or political adminis-
tration which wants to provide the system to
the participants. The new idea is to empower
the participants to not only engage in the pro-
cess but to also be able to technically execute the
process in a joint effort.

Not just changes to the rules of procedure or
any document jointly created with such a fu-
ture LiquidFeedback system would depend on
a majority of people supporting these changes,
but the actual execution of these changes
would be carried out by a distributed system,
hosted by eligible voters, that could interpret

Roadmap to a
Decentralized LiquidFeedback

by Andreas Nitsche, Berlin, July 27, 2018



The Liquid Democracy Journal14 issue 6

Roadmap to a Decentralized LiquidFeedback

properly formed proposals automatically (e.g.
enabling a new software component or chan-
ging a paragraph of a policy automatically).

Requirements

When creating such a system, there are a
couple of requirements to meet. First of all, we
need to ensure that decentralization doesn't
come at the cost of sacrificing the fairness of
the existent LiquidFeedback process. It should
also be ensured that the process is transparent
for all participants. Only transparency ensures
that compromized hard- or software (e.g. due
to hacking attempts or technical failures) can
be detected; i.e. the results of the system shall
be verifiable by the participants. In case of er-
rors or manipulations, it should be possible to
correct the results.

Despite transparency and correctability, which
allow us to handle errors of the system, we still
expect such a system to be as secure as pos-
sible, i.e. it should be as difficult as possible to
manipulate the system even if it cannot be
completely outruled. Furthermore, such a sys-
tem should be scalable and allow millions of
people to take part in democratic decisions at
the same time, if desired.

Challenges

In order to fulfill the previously stated require-
ments, proper algorithms have to be selected
and/or created where necessary. A data model
as well as algorithms for data distribution and
finding a consensus have to be defined. In
some cases we can rely on existing technolo-

gies, in other cases we need to modify existing
technologies or invent new algorithms, espe-
cially where existing solutions are not suitable
for distributed application or are environ-
mentally hazardous (e.g. blockchain with
proof-of-work). The system needs to be fault
tolerant and (as previously mentioned) cor-
rectable, e.g. it must be possible to recover
from a compromized end user device due
hacker intrusion (key revocation and recovery).

A couple of theoretical findings as well as tech-
nological insights must be kept in mind when
designing a decision making process, even
more so when abstaining from relying on a
central trusted authority.

Most notably Kenneth Arrow's impossibility
theorem published in 1951 affects the design of
decision making processes. From this theorem
follows that when there are more than two vot-
ing options, tactical voting cannot be outruled
completely. [Gibbard] [PLF, section  4.14] On
the other hand, breaking down complex de-
cisions into simple binary (i.e. yes/no) ques-
tions suffers the problem that the order of the
questions has a massive impact on the overall
outcome of the process. [GoD] Consequently, if
we want to treat all participants of a democrat-
ic process equally, we need to allow more than
two voting options on a ballot for a given issue.
In turn, tactical voting has to be taken into
consideration. To treat everyone equally, it is
important to temporarily hide cast ballots.
[PLF, section  4.14] [GoD] Doing this without a
central (trusted) authority is a rather complex
issue because we want no participant to be able
to change his or her ballot based on the other



15The Liquid Democracy Journalissue 6

ballots. Even worse, in some cases even with-
drawing a ballot from a vote (dependent on the
other voters' ballots) may lead to tactical ad-
vantages. [Moulin] The last article in this Is-
sue  #6 of “The Liquid Democracy Journal on
electronic participation, collective moderation,
and voting systems” will elaborate the serious
consequences of these findings for all forms of
electronic decision making systems. [Practical]

Another aspect to keep in mind is the overall
complexity of the system. The above men-
tioned challenges will require sophisticated al-
gorithms, so another important aspect to keep
in mind is making sure the overall complexity
of the system is as low as possible in order to
allow easy maintenance and continuing re-
volution.

Existing technologies

In addition to new algorithms, a future decent-
ralized LiquidFeedback will also be based on a
couple of existing technologies. The currently
existing version of LiquidFeedback already
provides a process for proposition develop-
ment and decision making that treats every
participant equally and scales (in theory) for
groups of unlimited size. [Infinite] [Limiter]
However, current LiquidFeedback versions
don't allow an automatic interpretation/ap-
plication of proposals that were agreed upon.
For example, the members of a political party
may use LiquidFeedback to decide on chan-
ging their party program, but the actual
change will need to be executed by a person
designated to maintain the document. This
limitation has partially been lifted by combin-

ing LiquidFeedback with revision control sys-
tems, which is a first step to automate the ap-
plication of approved proposals in the decision
making process. [RevisionControl]

Peer-to-peer networks for file sharing have
been existent since the millenium change and
are an important advance in distributed com-
puting. While these networks allowed the dis-
tribution of data, they were unable to solve the
problem of commonly agreeing on a particular
state of data. Blockchains solved this problem
by ensuring that a large portion of the parti-
cipants work with and refer to the same work-
ing state.

To ensure that (in the long term) only one state
exists within a decentralized network, block-
chain systems usually rely on proof-of-work
methods where energy (and therefore money)
has to be invested on a well-defined mathem-
atic challenge in order to create a new state
within the network. Due to the bad environ-
mental side effects and because of the risk that
a malicious party could gain a majority of pro-
cessing resources, an alternative to the proof-
of-work scheme has been proposed, called
proof-of-stake. However, applying these proof-
of-stake algorithms (that do not rely on wasted
energy) to traditional blockchains can cause
problems because participants in the network
have nothing to lose by creating conflicting
blocks, thus effectively preventing a consensus
within the network (which was the goal in the
first place). Methods have been proposed to fix
this problem by introducing a punishment for
such behavior [EthereumWiki], but in the next
article, we will show how a consensus can be

Roadmap to a Decentralized LiquidFeedback



The Liquid Democracy Journal16 issue 6

achieved in a different way (that is, in our
opinion, much easier). [LFB]

Proof-of-stake and trusting the majority

In order to be independent of a central author-
ity, we need to make all operational decisions
of the system in a decentralized way. In this
context, each eligible voter shall have the same
influence on all decisions being made within
the system, including operational decisions
such as a consensus on who cast a vote and
who was late.

It should be noted that if we completely replace
the central authority with an automatic, de-
centralized system where all participants hold
the same stake (proof-of-stake with same stake
for each eligible person), then it's up to the ma-
jority to properly execute the agreed upon
rules. For the remainder of our considerations,
we need to assume that the majority of people
are willing to ensure the overall fairness of the
process. This is not a major restriction because
in traditional decision making processes, the
proper execution of the rules of procedure usu-
ally depends on elected people (or persons ap-
pointed by elected people). If the majority of
the electorate are malicious, every democratic
system would fail. We therefore assume bene-
volence of a majority of eligible voters.

Accreditation

A necessary prerequisite for any democratic
decision making process is the accreditation of
the participants. There needs to be clarity who
is eligible to vote and how to identify these

people during the voting process. There needs
to be a process allowing new people to gain eli-
gibility to vote as well as a process to remove
people's accounts (e.g. in case of death or leav-
ing a political party). While the design of such
an accreditation process in detail is out of
scope of this article, we assert that it is made
public (at least among the participants) who
enters and who leaves the set of eligible voters.

Under the previously stated prerequisite that a
majority of eligible voters are benevolent and
further assuming that the accreditation pro-
cess is designed in such a way that the elector-
ate can verify the list of persons gaining or los-
ing eligibility to vote, we can conduct a vote on
each person to be added or removed from the
list of eligible voters. In many cases, such a vote
will not prompt the electorate to express their
own opinion on accepting a person to enter or
banning a person from the group of eligible
voters, but may rather be a mere confirmation
of the outcome of a previously defined process
that has been carried out in the real world (e.g.
appearing in front of an audience and paying
the membership fee for an organization).

The article “Decentralized Accreditation” [Ac-
creditation] in this Issue #6 will have a closer
look at different choices on how to implement
a decentralized accreditation process for de-
termining, identifying, and authorizing the
eligible voters.

Prototype

A working prototype to demonstrate the basic
principles has been created and will be in-

Roadmap to a Decentralized LiquidFeedback



17The Liquid Democracy Journalissue 6

cluded in the electronic version of this Issue #6
as well as published on the website of the
journal in advance. The next article will explain
the prototype as well as a new method for mer-

ging conflicting blocks in a blockchain which
helps to implement a proof-of-stake system
that is environmentally friendly.

_________

[Accreditation] Jan Behrens, Andreas Nitsche, Björn Swierczek: “Decentralized Accreditation”. In “The Liquid Democracy Journal on

electronic participation, collective moderation, and voting systems”, Issue 6, July 27, 2018, pp. 30-33. ISSN 2198-9532. Published by

Interaktive Demokratie e. V.

[EthereumWiki] “Proof of Stake FAQ” on Ethereum Wiki on GitHub. Accessed on 2018-06-10 at

https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ/ea47c31b36b00415fe5b54db36ddad43c9bf650e

[Gibbard] Allan Gibbard: “Manipulation of Voting Schemes: A General Result”. In “Econometrica”, Vol. 41, No. 4, July 1973, pp. 587–601.

Published by the Econometric Society (Wiley-Blackwell).

[GoD] Jan Behrens: “Game of Democracy”. In “The Liquid Democracy Journal on electronic participation, collective moderation, and

voting systems”, Issue 2, October 7, 2014, pp. 11-22. ISSN 2198-9532. Published by Interaktive Demokratie e. V., available at

http://www.liquid-democracy-journal.org/issue/2/The_Liquid_Democracy_Journal-Issue002-02-Game_of_Democracy.html

[Infinite] Jan Behrens, Andreas Nitsche, Björn Swierczek: “A Finite Discourse Space for an Infinite Number Of Participants”. In “The

Liquid Democracy Journal on electronic participation, collective moderation, and voting systems”, Issue 4, July 28, 2015, pp. 42-52.

ISSN 2198-9532. Published by Interaktive Demokratie e. V., available at http://www.liquid-democracy-journal.org/issue/4/The_

Liquid_Democracy_Journal-Issue004-02-A_Finite_Discourse_Space_for_an_Infinite_Number_of_ Participants.html

[LFB] Jan Behrens, Axel Kistner, Andreas Nitsche, Björn Swierczek: “The LiquidFeedback Blockchain”. In “The Liquid Democracy Journal

on electronic participation, collective moderation, and voting systems”, Issue 6, July 27, 2018, pp. 18-29. ISSN 2198-9532. Published by

Interaktive Demokratie e. V.

[Limiter] Jan Behrens, Andreas Nitsche, Björn Swierczek: “LiquidFeedback's Issue Limiter”. In “The Liquid Democracy Journal on

electronic participation, collective moderation, and voting systems”, Issue 5, May 11, 2017, pp. 32-35. ISSN 2198-9532. Published by

Interaktive Demokratie e. V., available at http://www.liquid-democracy-journal.org/issue/5/The_Liquid_Democracy_

Journal-Issue005-04-LiquidFeedbacks_Issue_Limiter.html

[Moulin] Hervé Moulin: “Condorcet's principle implies the no show paradox”. In “Journal of Economic Theory”, Vol. 45, Issue 1, June 1988,

pp. 53-64. Published by Cornell University, Department of Economics.

[PLF] Behrens, Kistner, Nitsche, Swierczek: “The Principles of LiquidFeedback”. ISBN 978-3-00-044795-2. Published January 2014 by

Interaktive Demokratie e. V., available at http://principles.liquidfeedback.org/

[Practical] Jan Behrens: “Practical Consequences of Arrow's Theorem for Open Electronic Voting”. In “The Liquid Democracy Journal on

electronic participation, collective moderation, and voting systems”, Issue 6, July 27, 2018, pp. 34-37. ISSN 2198-9532. Published by

Interaktive Demokratie e. V.

[RevisionControl] Björn Swierczek: “Democratic File Revision Control with LiquidFeedback”. In “The Liquid Democracy Journal on

electronic participation, collective moderation, and voting systems”, Issue 4, July 28, 2015, pp. 8-41. ISSN 2198-9532. Published by

Interaktive Demokratie e. V., available at http://www.liquid-democracy-journal.org/issue/4/The_Liquid_Democracy_

Journal-Issue004-01-Democratic_Revision_Control_with_LiquidFeedback.html

Roadmap to a Decentralized LiquidFeedback



The Liquid Democracy Journal18 issue 6

The LiquidFeedback Blockchain

by Jan Behrens, Axel Kistner, Andreas Nitsche and Björn Swierczek, Berlin, July 27, 2018

In this article, we present the LiquidFeedback
Blockchain, an alternative approach to the
blockchain. Unlike proof-of-work schemes,
which require mining, or many proof-of-stake
schemes, which require special consideration
of the nothing-at-stake problem where nodes
might take advantage from working against a
consensus, our scheme does not require en-
ergy-costly mining and, at the same time, does
not just cope with multiple heads on the block-
chain but even utilizes them to find a con-
sensus. Our consensus-finding algorithm is in-
spired by swarm behavior commonly found in
the animal kingdom.

Our approach isn't just all theory, but along
with the publication of this article, we present
a working prototype that is implementing the
most important aspects described here. Where
appropriate, this article will describe further
possible enhancements. Our prototype isn't lim-
ited to the bare handling of the blockchain but
provides a module framework which allows

different applications to be run decentralized.
One such demo application demonstrates the
principle of a decentralized accreditation, and
another demo application is a simple voting
app to complete our proof-of-concept.*

For a closer look regarding the motivation,
refer also to [Roadmap].

Players on the field

In the remainder of this article and within the
source code of the prototype implementation,
we distinguish between nodes and persons.

(See Figure 1)

A node is an instance of the LiquidFeedback
Blockchain client software that runs on a com-
puter connected to the internet (or any other
network), while a person is a human who
wants to use the LiquidFeedback Blockchain
and trusts a particular node.

________

* This application doesn't incorporate the LiquidFeedback proposition development and decision making process yet but simply allows

voting on binary decisions. It is thus only suitable for demonstration purposes.



19The Liquid Democracy Journalissue 6

Nodes are responsible for engaging in a peer-
to-peer communication to exchange new in-
formation and agree on a common state. Ac-
credited persons are necessary to empower
peers to have their point of view taken into
consideration by the other nodes. The more
persons trust a node, the higher the influence
is of that node within the network. Unlike tra-
ditional peer-to-peer systems, the presented
prototype supports:

* centralized application (a single node
used by all persons),

*completely decentralized application
(each person runs his or her own node),

*or any combinations in between, e.g.
some persons have their own node, while
other persons share nodes.

The LiquidFeedback Blockchain

Node B

Node D

Node A

Node C

Node E

Figure 1: Nodes and persons



The Liquid Democracy Journal20 issue 6

In the current implementation, nodes
as well as persons are technically iden-
tified through their public key. A node
that handles a person's account is cur-
rently required to retrieve that person's
private key. Other (potentially more se-
cure) schemes of empowering a node
are thinkable.

A deterministic blockchain

The main purpose of our blockchain is
to find a common understanding which
transactions (e.g. cast votes) have been
submitted to the system at a certain
time or time interval. Each block in the
blockchain will represent a quantized
amount of time. For periods without transac-
tions, each block contains an integer for stor-
ing the time interval such that it is possible to
skip a big number of time intervals without en-
larging the blockchain.

As usual, the hash of each block is computed by
hashing a concatenation of the hash of the pre-
vious block with the payload of the current
block in order to ensure integrity over all pre-
vious blocks with a single hash value at the end

of the chain. Our approach, however,
differs from usual blockchains as fol-
lows:

*Each block contains an unordered
non-empty set of transactions.

This is implemented through a deterministic
order (lexicographical sorting of transaction
hashes) of all transactions within a block.

*The calculation of the hash of the
block is deterministic and there is

deliberately no nonce used. Thus equal sets
of transactions (at the same time interval)
create the same hash, as long as the preced-
ing chain is the same.

Single Node

Figure 2: Fully centralized application

Figure 3: Complete decentralized application

Node A

Node B Node C

The LiquidFeedback Blockchain



21The Liquid Democracy Journalissue 6

{

"index": 3284,

"interval": 600,

"previous_hash": "33b55d628a62d086084894dbc43f3a1368ce90227c15f99adb6bde66a88dd0bc",

"timeindex": 25480150,

"transactions": {

"1bd0e00bc2605e193cd939186e10dfcaeae3756dc59331e96642523dc9bd0057": {

"data": {

"decision": "yes",

"identification": "Jon Doe",

"intent": "accredit",

"person_id": "10a5d0f2b71fe83db8021c4472532e047fce84d43193fa7a0082637be9f2c506"

},

"module": "person",

"person_id": "10a5d0f2b71fe83db8021c4472532e047fce84d43193fa7a0082637be9f2c506",

"signature": "kqM/FlUHGfddRwczbzq4xYgQItA2CE/XyKqcGxruU1utsYg18HeQ0R9t2mDrNSRy\n

yojZ0zqNiz/xOw2pw+69YXXNkbnrV1SCXfgMs09nSHcWDtWlziffvf4Lje8i6Br/\nI

tZGHjm6vKT1v5KNrAxOSaHisku3GP0eJno1YvYccqfWWKzugBI0YpjKCHbpMQL+\noO

x571/7SBmYNxqcRJPttN75JoRQK7AdTs82LLLyWwHCJG2+vg0FPVG+aiDiDGsZ\nQ5N

7CWeaW1AKPiQ2FfD8H1ACNoClLe4ZNIXp88XCEdwFGOEp0CKK4R93VV7/Fnlh\nRREB

Mqgk0c/UisHTJ41aow==\n"

}

"33b55d628a62d086084894dbc43f3a1368ce90227c15f99adb6bde66a88dd0bc": {

"data": {

"decision": "yes",

"initiative_id": "f33ddf23044ed5c0dcbc858015645ae25196a1f1b55397bf2b610b07451

b1964",

"intent": "vote"

},

"module": "demo01",

"person_id": "10a5d0f2b71fe83db8021c4472532e047fce84d43193fa7a0082637be9f2c506",

"signature": "IdO7BXd95twQwnb/BWthIhEMFD4PEk/doMY8d8e3mZ3bj+B41bT+LJH0DcqljSbU\n

gXAn1q3iVpFI19eCVhenT7inDJTMZBgmjY0TOkz0zyh235HBk/9J/Z2GsK7T9ctk\nK

Gp9BVDayFJy/Z9diW/VaWl6GoDL40mQ1m27MEd92iFnr4CVc2QCdcNS/ml1ohPT\nBa

IswWXP16yVrnQSXjrUpQtCmpkuU1iGs1NASHK5dCiQ7/VAAkYhW4Ur89xaRapb\nwji

uFVA/MsFShCkiDZBl0PDzdc9BbK9jGSUL0U0NUpwzP+0PRwumzPZaF8NmxwLA\nwixd

XaB8ZFUVZfHrW+nVQw==\n"

}

}

}

Figure 4: Example of a block in the LiquidFeedback Blockchain

The LiquidFeedback Blockchain



The Liquid Democracy Journal22 issue 6

Figure 5: Node E picks random persons

Node B

Node D

Node A

Node C

Node E

Gossiping

The exchange of data between all nodes is im-
plemented through a so-called “gossip” pro-
tocol, where nodes randomly connect to each
other and exchange data. Eventually every
node will have received all information.

In our case, however, the selection of nodes for
exchanging new parts of the blockchain must

not be arbitrary. Each node that wants to pull
information from other nodes randomly se-
lects a number of accredited persons. The cor-
responding nodes are contacted for a pull-only
exchange of their current merged state of the
blockchain. (Merging will be described in the
next section.) In order to determine the por-
tion of the blockchain that needs to be re-
trieved from each node, a binary search is con-
ducted to determine a common trunk, after

The LiquidFeedback Blockchain



23The Liquid Democracy Journalissue 6

which the remaining blocks are transferred
from the corresponding node.

By performing multiple pull-only transfers
from a number of nodes (by randomly select-
ing accredited persons), a node collects a set of
different blockchains which can be represen-
ted as a tree by combining the common parts.
If multiple persons were selected who are asso-
ciated with the same node, a corresponding

weight greater than one is stored for these re-
trieved blockchains. For authorization, the
hash of the head of the exchanged blockchain
is signed by the sending peer.

In addition to these pull-only transfers, any
two nodes which connect to each other addi-
tionally perform a full push and pull exchange
of the following data:

Figure 6: Node E pulls blockchains from other nodes

Node E

The LiquidFeedback Blockchain

Node B

Node D

Node A

Node C

weight 2 weight 2

weight 1



The Liquid Democracy Journal24 issue 6

The LiquidFeedback Blockchain

3971ee75...
9a66b318...
dceac5ff...

9a66b318...
b031f3fa...

b031f3fa...
dceac5ff...

04605f08...
99c6530b...
a5d37a77...

668d2945...

654d7329...

04605f08...
a5d37a77...

668d2945...

cc57c7dc...
45a319c8...

1b3bc02f...
59231dbd...

36667e23...

9a66b318...
b031f3fa...
dceac5ff...

04605f08...
a5d37a77...

3971ee75...
654d7329...
99c6530b...

cc57c7dc...
45a319c8...

1b3bc02f...
59231dbd...

36667e23...

668d2945...

bl
oc

kc
ha

in
m

er
ge

Figure 7: Merging blockchains based on majorities while preserving all transactions



25The Liquid Democracy Journalissue 6

*host/port announcements from nodes (to
inform other nodes how to contact that
node),

*node trust announcements from persons
(i.e. statements which node is the trusted
node of a person).

These additional announcements are secured
by a signature of corresponding node or per-
son, respectively, and contain a serial number
to allow overriding previous announcements.
An announcement with a lower serial is always
superseded by an announcement with a higher
serial (assuming a valid signature), in which
case the older announcement is discarded and
does no longer propagate through the net-
work.

Merging

After a configurable number of persons have
been randomly selected and their correspond-
ing merged blockchains have been pulled, a
merge algorithm is executed. This is where the
LiquidFeedback Blockchain differs from other
blockchains: alternative branches of the chain
aren't cut off (discarded), but due to the de-
terministic calculation of hashes (that only de-
pend on the sets of transactions per time inter-
val), it is possible to merge a set of branches
into a new blockchain that has a single head.

In order to mitigate attacks when a number of
nodes is offline (e.g. due to denial-of-service
attacks), there needs to be an adaptive “freez-

ing threshold” on how many time intervals
may be changed in a node's own blockchain
due to merging other blockchain branches. The
adaptive threshold will be described later in
this article. All other blocks are allowed to
change during the merge process.

Blocks for all time intervals after the freezing
threshold are reconstructed sequentially. For
each time interval after the frozen part, it is
determined which remaining transactions
(that are not contained in frozen blocks) are
contained in a majority of the pulled (yet un-
merged) branches at the given time interval
(while taking the weight into account that may
be greater than one if multiple persons with
the same node have been selected during the
random selection process).* Those transac-
tions with a majority greater than 50% (consid-
ering all pulled branches since the last merge
as 100%) are accepted for the current time in-
terval. A block with all accepted transactions is
appended and a new hash is calculated.

The process described above is repeated until
reaching the current time interval based on the
system clock of the node. All transactions
which have not been incorporated into the
merged blockchain earlier end up in the block
for the current time interval.

Swarm behavior

The mechanisms described above mimic a be-
havior similar to swarms: regarding whether to
consider a transaction to have been executed

________

* A better approach would be to also take those branches into account where the transaction is contained in the current time interval or any

previous time interval, but this hasn't been implemented in the prototype yet.

The LiquidFeedback Blockchain



The Liquid Democracy Journal26 issue 6

during a particular time interval, the node con-
tacts its neighbors (in this case random nodes
using a person's trust) and asks for their point
of view. Each node will follow a majority point
of view of its peers. This leads to an equillibri-
um where eventually all (or most) nodes will
have the same point of view whether a transac-
tion belongs to a particular block or not.

Freezing (and unfreezing) history

In order to mitigate certain kinds of attacks on
the network, further security mechanisms have
to be implemented. If a majority of nodes is off-
line, it is easier to maliciously create a wrong
majority point of view among the remaining
nodes. This could be abused in such way to first

The LiquidFeedback Blockchain

Node B

Node D

Node A

Node C

Figure 8: Network split attack step 1
Blocking a majority of nodes (A to C) to convince node E of node D's point of view

Node E



27The Liquid Democracy Journalissue 6

isolate some nodes (e.g. through a denial-of-ser-
vice attack), convince them of an alternative
state, and then incrementally allow connections
of further nodes to these convinced nodes (e.g.
by lifting the denial-of-service attack success-
ively). This way, it may be possible to rewrite
history without having to control more than
half of the nodes (other than blocking them).

To mitigate this attack, changing history
should be limited by freezing the past. Each
node would have a threshold index which in-
dicates which blocks are allowed to be modi-
fied during the merge process. Any blocks with
a time index lower than the threshold index
must not be modified during merging, and all
blocks with higher time indices must not in-

The LiquidFeedback BlockchainThe LiquidFeedback Blockchain

Node B

Node D

Node A

Node C

Figure 9: Network split attack step 2
Using majority of node D and E to convince node C (and thus gaining a majority within the whole network)

Node E



The Liquid Democracy Journal28 issue 6

corporate transactions contained already in
the frozen part of history during merging. The
threshold time index can adaptively change.
For example, if during a certain time ‘X’ the
merging algorithm would have changed his-
tory if it wasn't frozen, the threshold can be
slowly adjusted towards the past, eventually al-
lowing a change of the frozen past. The older
the blocks are, the more stable they become. If
during the time ‘X’ no part of the frozen his-
tory would have been changed if it wasn't
frozen, the threshold can be adjusted towards
the future (e.g. twice as fast as moving it to the
past otherwise). This way, an equilibrium

would be reached that is usually close to the
present, and denial-of-service attacks would
need to be long-lasting in order to change a
larger portion of history.

Flood protection

Another possible attack vector is to flood the
system with transactions. To mitigate these
kinds of attacks, a quota is necessary that lim-
its each person from injecting more than a cer-
tain amount of data per time into the system.
Any transactions that would violate this limit
could easily be removed from the system dur-
ing merge.

The application layer

The prototype created along with this article
comes with a module framework which allows
different applications to be run decentralized.
Each application runs in a sandbox and
provides hooks to process exchanged transac-
tions and modify an application specific state.
The framework assists by rolling back the state
accordingly after a merge with history change.

A meta-application is thinkable, which would
allow to vote on application code. Applications
which receive a majority of votes could be
automatically incorporated into the system or
updated, respectively.

Adopting the full LiquidFeedback proposition
development and decision making process for
this framework (as one of many possible ap-
plications) is a complex task, which will be
commented on in the following section.

The LiquidFeedback Blockchain

dynamic
threshold

Figure 10: Blocks above the dynamic freezing
threshold are not changed during merging



29The Liquid Democracy Journalissue 6

Adopting the LiquidFeedback process to
the LiquidFeedback Blockchain

Adopting the LiquidFeedback process to the
LiquidFeedback Blockchain would require a
complete reimplementation even though most
algorithms (apart from their implementation)
could be used. One of the biggest problems is
to temporarily hide cast ballots in order to
avoid tactical voting. On one hand, votes must
be propagated through the network. On the
other hand, they need to be kept secret. [GoD]
The most promising solution to this problem is
a threshold cryptosystem where a majority of
nodes may decrypt all cast ballots, which shall
not happen until the voting phase has ended
and some additional time has passed for his-
tory to become frozen.

Another big obstacle is correctability of the
system when votes have been recorded
wrongly (e.g. due to a hacked node). The art-
icle, “Practical Consequences of Arrow's The-
orem for Open Electronic Voting” [Practical],
also published in this Issue  #6 of The Liquid
Democracy Journal, covers this issue in depth
and reveals some problems that are inherent to
all forms of electronic voting.

Availability of code

A working prototype (without the freezing
threshold and flood protection) has been pub-
lished and is available at the official homepage
of “The Liquid Democracy Journal on electron-
ic participation, collective moderation, and
voting systems” at:
http://www.liquid-democracy-journal.org/

________

[GoD] Jan Behrens: “Game of Democracy”. In “The Liquid Democracy Journal on electronic participation, collective moderation, and

voting systems”, Issue 2, October 7, 2014, pp. 11-22. ISSN 2198-9532. Published by Interaktive Demokratie e. V., available at

http://www.liquid-democracy-journal.org/issue/2/The_Liquid_Democracy_Journal-Issue002-02-Game_of_Democracy.html

[PLF] Behrens, Kistner, Nitsche, Swierczek: “The Principles of LiquidFeedback”. ISBN 978-3-00-044795-2. Published January 2014 by

Interaktive Demokratie e. V., available at http://principles.liquidfeedback.org/

[Practical] Jan Behrens: “Practical Consequences of Arrow's Theorem for Open Electronic Voting”. In “The Liquid Democracy Journal on

electronic participation, collective moderation, and voting systems”, Issue 6, July 27, 2018, pp. 34-37. ISSN 2198-9532. Published by

Interaktive Demokratie e. V.

[Roadmap] Andreas Nitsche: “Roadmap to a decentralized LiquidFeedback”. In “The Liquid Democracy Journal on electronic

participation, collective moderation, and voting systems”, Issue 6, July 27, 2018, pp. 13-17. ISSN 2198-9532. Published by Interaktive

Demokratie e. V.

The LiquidFeedback Blockchain



The Liquid Democracy Journal30 issue 6

Decentralized Accreditation

by Jan Behrens, Andreas Nitsche, and Björn Swierczek, Berlin, July 27, 2018

Whenever organizing democratic decisions, a
crucial task is the accreditation of eligible
voters. The democratic principle “one person –
one vote” is vital for the overall fairness of any
election or decision making process. Usually
the accredition is executed by authorized
agents of an organization (in case of decisions
within an organization) or by polling clerks (in
case of public elections). If a democratic pro-
cess is properly designed, then the overall pro-
cess (from accreditation to casting a ballot) can
be publicly supervised such that it is not pos-
sible to use the accreditation process to violate
against the principle of “one person – one vote”.
However, even in these cases, a centralized or-
ganization (possibly including a voter register
or similar database) is usually required.

The previous articles in this Issue #6 of “The Li-
quid Democracy Journal on electronic particip-
ation, collective moderation, and voting sys-
tems” explained how a completely decentral-
ized democratic decision making system can
be created. For such an electronic system, each
eligible voter has the same rights and there is

no central authority with certain administrat-
ive privileges.

This article will explain how to connect a
totally decentralized system with real-world
processes that are necessary to perform an ac-
creditation of eligible voters. It should be
noted that “one person – one vote” doesn't al-
ways imply that every human being gets a vote.
Usually an organization wants to empower
their members and not people outside of the
organization. A municipality wants to em-
power its citizens or residents. In case of hier-
archical organizations, certain decisions might
be restricted to people belonging to a certain
division of the organization (e.g. a local
chapter). But it isn't just a matter of figuring
out who should be deemed an eligible voter; we
also need to find ways to identify those people.

A simple approach

The simplest approach to collectively perform
an accreditation is to conduct a vote on every
new person to be added to the set of eligible



31The Liquid Democracy Journalissue 6

voters. When we consider a decentralized de-
cision making system such as presented in the
previous article, we do not just need to approve
the eligible voter but also provide means of au-
thentication of that voter (i.e. after successful
accreditation, the system needs to be able to
validate whether some input has been really
sent by or on behalf of that voter).

Technically, a validation of a person's request
could be done using an asymmetric crypto-
graphic key. In a world where every person has
appropriate end-user devices that are trusted,
this would be the most natural solution. In this
case, a person's public key fingerprint would
need to be made public, e.g. by reading it in
front of an audience at a public assembly. Then
everyone would be entitled to submit a request
to the system that the owner of the corres-
ponding private key is to be added to the list of
eligible voters.

Joining resources

The idea that every person can have a pub-
lic/private-key pair and that they are technic-
ally able to keep their private key secret is an
idealization (see also [PLF, section  3.5]). The
idea might have been practicable during the
90s, but quickly end-user devices were increas-
ingly becoming interconnected in such a way
that regular software updates are common.
Only a small fraction of internet users has real
control over their devices; most users will reg-
ularly install many megabytes (or even giga-
bytes) of unknown machine code that has been
provided to them from companies like Mi-
crosoft, Apple, or Google.

Consequently, storing a private key on an end-
user device isn't necessarily the best choice
these days. While aiming for decentralization,
a technological monoculture (e.g. if a majority
of participants uses a certain operating system
or a certain chipset) could introduce a single
point of failure to the system.

A different approach for identifying people
would be to entrust a local chapter of an or-
ganization (or any other known group of
people) with the particular job of maintaining
a person's account (and to act as proxy for that
person). Such an entity could use united re-
sources to monitor security issues in a better
way than the average person might do when
being on their own. Each person could freely
choose the entity he or she entrusts with man-
aging his or her account (or manage the ac-
count themselves, if desired). This way, single
points of failure might be more easily circum-
vented. Combining this with a public accredit-
ation process, a person would state his or her
identity and publicly announce which techno-
logical provider will be his or her proxy.

At the absolute discretion of the voters?

If, from a technical point of view, all eligible
voters decide about including a new member
in a democratic decision, one may wonder if
that constrains the statutes of an organiza-
tion? Would the approval of each new member
application depend on the absolute discretion
of a majority of members?

While the approval of a new entrant is technic-
ally implemented through a majority decision,

Decentralized Accreditation



The Liquid Democracy Journal32 issue 6

this doesn't impose constraints on the statutes
of an organization using such a decentralized
accreditation system. The semantics of the
technical voting procedure on approving a new
member can be defined in such a way that the
voters do not state whether they want the new
member to be accepted but whether they con-
firm or do not confirm that the member fulfills
the requirements necessary to be approved. It
could be each member's obligation to truthfully
answer this question. Of course, if a majority
of members fail to act according to the rules,
the overall system fails. As previously dis-
cussed in the article “Roadmap to a Decentral-
ized LiquidFeedback” [Roadmap], it is a reas-
onable (and necessary) assumption that a
majority of participants behave benevolently.

Of course, the use of transitive delegations (Li-
quid Democracy) could keep the additional
overhead for most participants as small as pos-
sible. Members of a political party, for ex-
ample, could simply delegate the job of accred-
itation to someone they trust (or to someone
who they trust to know someone trustworthy).

Difference from web of trust

The proposed system is different from a clas-
sical web of trust. While a web of trust (such as
used with PGP, GnuPG, or similar crypto-
graphic software) is also capable of verifying
one's true identity (and to connect it with a

public/private-key, for example), a classical
web of trust isn't capable of creating a con-
sensus because the trust level of an entity de-
pends on the point of view from which you
look at the network (i.e. each participant con-
cludes different trust levels).

The key feature of a distributed decision mak-
ing system, however, is to find a consensus*. A
web of trust could be modified in such way that
there is a “seed” of trusted members, i.e. the
trust wouldn't depend on the point of view but
would originate from those members. Treating
certain members different from other mem-
bers, however, doesn't fulfill the equal treat-
ment of all participants (and thus conflicts
with our goals for a decentralized accredita-
tion system). Therefore, the “seed of trust”
needs to be dynamic and ultimately reflect all
members equally.†

Removing accounts

It is not sufficient to provide mechanisms for
new members, but there also need to be mech-
anisms for removing the accreditation of a
person. Even in cases where there is no expul-
sion of members allowed, it is always possible
for a human to die. In this case, his or her ac-
creditation would need to be removed to avoid
misuse of his or her voting power. The previ-
ous statements regarding new entrants also
apply to removing member accounts. The

Decentralized Accreditation

________

* With “consensus” we do not mean unanimous decisions but a consensus based on majorities. See also [PLF, section 4.13].
† It would still be possible to temporarily restrict new members from deciding about accepting other members, but this should only

be a temporary condition.



33The Liquid Democracy Journalissue 6

mechanism for removing accounts could also
serve as a last resort for healing identity theft
such as loss of a private key.

Summary

Decentralized accreditation is similar to the
concept of “web of trust” but differs from it in
certain regards. Most importantly, decentral-
ized accreditation aims to create a common
point of view on a set of eligible voters and
their means of authorization.

A simple approach to decentralized accredita-
tion is to conduct votes for each new person to
join a group of eligible voters. While from a

technical point of view, this empowers the
electorate to decide about each accredited per-
son, the elecorate could be bound to rules when
executing this task. These rules must be well-
defined and take into account removal of
member accounts as well.

While it is possible to use public/private-key
pairs for authorization, it is not required that
each eligible voter securely stores a private key
him- or herself. Technical providers can handle
identity management and authorization of
several voters at the same time as long as each
eligible voter is able to freely choose such tech-
nical providers and/or use their own technical
infrastructure.

Decentralized Accreditation

________

[PLF] Behrens, Kistner, Nitsche, Swierczek: “The Principles of LiquidFeedback”. ISBN 978-3-00-044795-2. Published January 2014 by

Interaktive Demokratie e. V., available at http://principles.liquidfeedback.org/

[Roadmap] Andreas Nitsche: “Roadmap to a decentralized LiquidFeedback”. In “The Liquid Democracy Journal on electronic

participation, collective moderation, and voting systems”, Issue 6, July 27, 2018, pp. 13-17. ISSN 2198-9532. Published by Interaktive

Demokratie e. V.



The Liquid Democracy Journal34 issue 6

Practical Consequences of
Arrow's Theorem for
Open Electronic Voting

by Jan Behrens, Berlin, July 27, 2018

In the second article [Roadmap] in this Is-
sue  #6 of The Liquid Democracy Journal, we
mentioned two contradictory design criteria
for electronic decision making systems: on the
one hand, considerations regarding tactical
voting require that cast ballots are temporarily
hidden and that ballots should not be changed
or removed after disclosore of the cast ballots;
on the other hand, we want to ensure that
wrongly cast ballots (e.g. through hacker at-
tacks) can be corrected afterwards.

This article will elaborate a deeper conflict that
can be seen as a consequence of Arrow's Im-
possibility Theorem in combination with com-
plexity of computer systems and which affects
all forms of electronic decision making.

Arrow's impossibility theorem

Kenneth Arrow showed in 1951 that it is im-
possible to create a voting system where all
voters may express their preferences while ful-
filling several desirable properties of the sys-
tem at the same time. In consequence, tactical

voting cannot be ruled out when there are
more than two voting options. [Gibbard] [PLF,
section 4.14]

One might be tempted to restrict people from
expressing their true preferences on a ballot
(or to allow voters to express more than their
preferences, e.g. a “satisfaction rate” that is a
real number between 0 and 10). But these at-
tempts are not suitable to eliminate the pos-
sibility of tactical voting either. [PLF, sec-
tion 4.14]

Given more than two voting options, we have
to face the possibility of tactical voting. Thus,
preferential ballots should be hidden between
submitting and tallying, such that individual
voters cannot gain advantages by delaying
their own vote and casting a strategically mod-
ified ballot based on other ballots that have
been already submitted by other voters. [GoD]

It should be noted that the above considera-
tions only apply when there are more than two
voting options. A binary decision (that is totally



35The Liquid Democracy Journalissue 6

independent from other decisions) is not sub-
ject to tactical considerations because it makes
always sense to vote for your favorite option.
The next section will explain why democratic
decisions cannot generally be broken down to
a sequence of binary decisions without influ-
encing the outcome of the vote.

Majority cycles and binary decisions

The general existence of collective majority
cycles has already been discovered in the
18th  century by Marquis de Condorcet. [Con-
dorcet] [PLF, p.151] An example for a collective
majority cycle is that there is a majority prefer-
ring ‘B’ over ‘C’, another majority preferring ‘A’
over ‘B’, and yet another majority preferring ‘C’
over ‘A’. Research in the last century revealed
that under certain preconditions, there is a
high probability that all voting options are tied
in such a Condorcet paradox. [Schofield] In
consequence, breaking down a complex de-
cision into a sequence of yes/no-questions has
a major influence on the overall outcome de-
pending on the order in which the questions
are being asked. [GoD] Having a committee de-
termining the order of the questions would give
power to the committee to decide about the
outcome of the vote in certain scenarios and
thus violate the democratic goal to treat every-
one equal in the decision making process.*

Even if this problem of losing fairness is dis-
regarded, breaking a decision down into a se-

quence of yes/no-questions doesn't solve the
problem of tactical voting either. Consider an
example where a voter prefers ‘A’ over ‘B’ over
‘C’. The first ballot is about eliminating ‘B’ or
‘C’. Naturally, you would expect the voter to
vote for ‘B’ (i.e. for eliminating ‘C’). But consid-
ering that ‘C’ is an option almost nobody fa-
vors, it might be smarter to eliminate ‘B’ be-
cause in the subsequent ballot between ‘A’ and
‘C’, the first preference of the voter (i.e. ‘A’)
might win. Any attempt to convert political de-
cisions into a series of binary questions will, in
case of majority cycles, not just introduce un-
fair side effects but also cannot solve the prob-
lem of tactical voting.

Complexity of technology

Another circumstance we have to consider
when designing or assessing electronic decision
making systems is complexity of technology
and its impact on verifiability, particularly in
those cases where cryptography or remote au-
thentication and authorization methods are
used. Computer systems are too complex to be
verified by their users. In consequence, hack-
ing attempts are possible that might stay un-
detected or at least undetected until a ballot
has been closed.

Using open ballots allows for a verification of
the overall process by the participants. [PLF,
chapter  3] However, depending on the impact
of the decisions made with an electronic sys-

________

* Also when randomizing the order, not all voting options could be treated equally. Additionally such a system could be vulnerable to clones

(see also [Tideman]).

Practical Consequences of Arrow's Theorem for Open Electronic Voting



The Liquid Democracy Journal36 issue 6

tem, we might not just want verifiability but
also the ability to recover from a hacking at-
tempt and to correct wrongly cast ballots
(which would be possible given an open ballot
where identities are disclosed). But if it was
possible to correct a ballot after tallying, tactic-
al advantages could be gained by claiming to
be hacked and “correcting” one's ballot in such
a way that tactical considerations regarding all
other cast ballots are taken into account. In the
end, those people who correct their votes last
would gain an unfair advantage.

An unsolvable conflict

Obviously, a correction of ballots cannot be
forbidden and made possible at the same time.
There seems to be an unsolvable conflict: either
we declare all ballots as immutable once they
have been tallied by an electronic voting sys-
tem, or we allow corrections by each person
who cast a vote (which is possible in case of re-
corded votes). In the latter case, people who
fake a manipulation (e.g. by claiming their sys-
tem was hacked and/or posting their creden-
tials) would gain a tactical advantage.

Work around

In many contexts (e.g. policy making), it would
be irresponsible to abandon the possibility of
correcting manipulations because this could
put hackers in a dangerous position of power.
We thus have to deal with corrections but try to
keep the impact on the overall fairness of the
decision making process as little as possible.
One solution could be to proceed with vote cor-
rections as follows:

If the correction of ballots does not change the
overall outcome of the vote, these corrections
can simply be performed and the result doesn't
change. If, however, the overall outcome would
be different with the corrected ballots, then we
distinguish between two cases.

Case  I: the decision was a binary decision. In
this case, the ballots get corrected and the
overall result is changed accordingly.

Case  II: the decision involved more than two
voting options. In this other case, the outcome
of the vote is declared void and the vote must
be repeated. Declaring the vote void instead of
allowing another voting option to win reduces
the potential impact by faking a manipulation
in order to gain tactical advantages to main-
taining the status quo (i.e. a decision can only
be declared void but not changed). Further-
more, voters who make use of their possibility
to correct votes could be treated differently in
future elections: their votes could be published
prematurely and they could be given a certain
time to have them corrected until the remain-
ing votes are made public and tallied.

It should be noted that this approach would
treat the affected voters in Case II in an unfair
fashion if they were true victims of a hacking
attempt (or victim of an administrator's priv-
ilege abuse in case of a central server system
where the administrator could manipulate
votes easily). However, reducing the impact to
disadvantages in tactical voting (by letting cer-
tain voters vote prematurely and publish their
votes) is a lesser problem than giving hackers
the power to completely control a voter's ballot.

Practical Consequences of Arrow's Theorem for Open Electronic Voting



37The Liquid Democracy Journalissue 6

Future work

It has been shown that the impossibility to
verify the correct behavior of electronic de-
cision making systems has an effect on the
overall fairness of a compromised system even
in cases where all votes are done by roll call (re-
corded identities for each ballot, which get
published along with the ballot). A proposal has
been made how to practically deal with later
corrections of ballots while trying to preserve
the equal treatment of all voters as good as
possible. Not all impacts have been fully ana-
lyzed. For example, a premature publication of
certain ballots would allow estimations on the
final outcome of the voting procedure and
might foster tactical voting of the other voters.

For a decentralized decision making system
based on the LiquidFeedback Blockchain [LFB],
a precise algorithm for publication order and
timings would need to be created.

The considerations in this article are a rough
analysis of a generic problem that affects all
forms of electronic decision making. In order
to better assess the consequences and poten-
tial solutions or workarounds, it would be
helpful to formalize the problem and provide a
mathematical proof for (a formalized variant
of) the previous statements. We believe this
undertaking to be non-trivial because it would,
for example, require a modeling of real-world
processes such as “publication” of certain data
or a “public objection” to one's ballot.

________

[Condorcet] Marquis de Condorcet: “Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix”.

Imprimerie Royale, Paris, 1785.

[Gibbard] Allan Gibbard: “Manipulation of Voting Schemes: A General Result”. In “Econometrica”, Vol. 41, No. 4, July 1973, pp. 587–601.

Published by the Econometric Society (Wiley-Blackwell).

[GoD] Jan Behrens: “Game of Democracy”. In “The Liquid Democracy Journal on electronic participation, collective moderation, and

voting systems”, Issue 2, October 7, 2014, pp. 11-22. ISSN 2198-9532. Published by Interaktive Demokratie e. V., available at

http://www.liquid-democracy-journal.org/issue/2/The_Liquid_Democracy_Journal-Issue002-02-Game_of_Democracy.html

[LFB] Jan Behrens, Axel Kistner, Andreas Nitsche, Björn Swierczek: “The LiquidFeedback Blockchain”. In “The Liquid Democracy Journal

on electronic participation, collective moderation, and voting systems”, Issue 6, July 27, 2018, pp. 18-29. ISSN 2198-9532. Published by

Interaktive Demokratie e. V.

[PLF] Behrens, Kistner, Nitsche, Swierczek: “The Principles of LiquidFeedback”. ISBN 978-3-00-044795-2. Published January 2014 by

Interaktive Demokratie e. V., available at http://principles.liquidfeedback.org/

[Roadmap] Andreas Nitsche: “Roadmap to a decentralized LiquidFeedback”. In “The Liquid Democracy Journal on electronic

participation, collective moderation, and voting systems”, Issue 6, July 27, 2018, pp. 13-17. ISSN 2198-9532. Published by Interaktive

Demokratie e. V.

[Schofield] Norman Schofield, Bernard Grofman, Scott L. Feld: “The Core and the Stability of Group Choice in Spatial Voting Games”. In

the “American Political Science Review”, Vol. 82, No. 1, March 1988, pp. 195–211. Published by Americian Political Science Association

(Cambridge University Press).

[Tideman] Nicolaus Tideman: “Independence of clones as a criterion for voting rules”. In “Social Choice and Welfare”, Vol. 4, Issue 3, 1987,

pp. 185-206. Published by Springer.

Practical Consequences of Arrow's Theorem for Open Electronic Voting



The Liquid Democracy Journal38 issue 6



39The Liquid Democracy Journalissue 6

Appendix A: A Mathematical View on the Sockpuppet Problem

A mathematical view on the sockpuppet

problem

Jan Behrens

April 12, 2016

Abstract

We will consider two attempts to curtail the risk of sockpuppets by
reducing the voting-weight of non-verified accounts to a small (but non-
zero) value. It can be proven that at least in those cases where the non-
verified accounts have an impact on the outcome of the vote, a malicious
attacker can overrule any binary decision by simply adding a finite number
of sockpuppets, even if the voting-weight of each non-verified account is
reduced to a small but non-zero value or if the total voting-weight of all
non-verified accounts is limited.

Disclaimer

Please note that allowing sockpuppets in any vote or in any decision-making

system also violates the democratic principle of “one man – one vote”. Therefore,

the findings of this paper are only a supplementary reason for proper accreditation

in democratic processes.

1



The Liquid Democracy Journal40 issue 6

Conventions

• The symbol for the natural numbers N shall refer to a set that includes
the number zero, i.e. N := {0, 1, 2, 3, . . .}.

• The symbol for rounding a number r ∈ R (or r ∈ Q) down to the next
integer value is ⌊r⌋ such that r ≥ ⌊r⌋ ∈ Z and r − ⌊r⌋ < 1.

• The symbol for rounding a number r ∈ R (or r ∈ Q) up to the next integer
value is ⌈r⌉ such that r ≤ ⌈r⌉ ∈ Z and ⌈r⌉ − r < 1.

• min(a, b) := a if a ≤ b else b

• max(a, b) := a if a ≥ b else b

• The term “sockpuppet” describes a fake identity created with malicious
intent to manipulate public opinion and/or decisions by deception.

• Mr.Evil or Ms.Evil are used as names to refer to an attacker whose
goal is to manipulate a decision by overruling the overall outcome of a vote
using sockpuppets.

1 Reducing the voting-weight of non-verified

accounts by a factor x < 1

We consider a voting system where internet users may create “non-verified”
accounts on their own behalf (e.g. by using anonymous e-mail addresses or social-
media accounts). These accounts may be legit or malicious (i.e. sockpuppets).
A legit account is an account which is operated by a person who doesn’t operate
any other account in the system. In either case, each non-verified account gets
a reduced voting-weight of x < 1, while users who verify their account through
an accreditation process (with verification of identity) get a voting-weight of 1.

2

Appendix A: A Mathematical View on the Sockpuppet Problem



41The Liquid Democracy Journalissue 6

1.1 Conventions

P : The number of verified accounts (of which each has a voting-weight of 1)

x : Voting-weight of each non-verified account

n : The number of sockpuppets controlled by Mr.Evil

S : The number of all other (possibly legit) non-verified accounts

Consequently, the total voting-weight of all verified accounts is equal to P ,
whereas nx is the voting-weight of Mr.Evil, and Sx is the total voting-weight
of all other non-verified accounts. Therefore, P + Sx + nx is the total voting-
weight of all accounts in the system.

1.2 Proposition 1

Let:
x > 0, P ∈ N, S ∈ N (1)

Then there exists an n ∈ N such that:

nx >
P + Sx+ nx

2
(2)

This means: For any (possibly very tiny) positive voting-weight x > 0 of each
non-verified account and arbitrary counts of verified accounts P and (possibly
legit) non-verified accounts S, there exists a number n of additional sockpuppets
which Mr.Evil can add to gain a voting-weight of more than 50%, i.e. an
absolute majority.

1.3 Proof of proposition 1

Choose n as follows:

n :=

⌊

P

x

⌋

+ S + 1 (3)

=

⌊

P

x
+ S

⌋

+ 1 (4)

3

Appendix A: A Mathematical View on the Sockpuppet Problem



The Liquid Democracy Journal42 issue 6

Note that n ∈ N because ⌊P

x
+ S⌋ ∈ N. We further define n′ ∈ R:

n
′
:=

P

x
+ S (5)

Then, because x > 0:

n = ⌊n′⌋+ 1 (6)

⇒ n > n
′ (7)

⇔ n >
P

x
+ S (8)

⇔ n >
P + Sx

x
(9)

⇔ nx > P + Sx (10)

⇔
nx

2
>

P + Sx

2
(11)

⇔ nx >
P + Sx

2
+

nx

2
(12)

⇔ nx >
P + Sx+ nx

2
(13)

Since n ∈ N and because (2) is identical to (13), proposition 1 is true.

In other words: If Mr.Evil creates n = ⌊P

x
⌋ + S + 1 sockpuppets, then

he has more voting-weight than the other (verified and non-verified) accounts
combined, i.e. he obtains an absolute majority by fraud, which empowers him to
override the outcome of the vote.

4

Appendix A: A Mathematical View on the Sockpuppet Problem



43The Liquid Democracy Journalissue 6

2 Limiting the total voting-weight of all non-

verified accounts to a constant value Tmax

In the following, we will consider another attempt to stopMr. (or Ms.)Evil
from overruling majorities. We limit the total voting-weight of all non-verified
accounts by reducing the voting-weight of each non-verified account proportion-
ally as more non-verified accounts are created. Therefore, the total voting-weight
of all non-verified accounts stays constant if n → ∞.

As shown in this section, this attempt is also futile because whenever the non-
verified accounts have an impact on the decision, a finite number of sockpuppets
grants complete control over the outcome of the decision.

2.1 Conventions

Pyes : The number of verified accounts voting for “Yes”

Pno : The number of verified accounts voting for “No”

Syes : The number of (possibly legit) non-verified accounts voting for “Yes”,
disregarding Ms.Evil’s sockpuppets

Sno : The number of (possibly legit) non-verified accounts voting for “No”,
disregarding Ms.Evil’s sockpuppets

n : The number of additional sockpuppets controlled by Ms.Evil

Tmax : Maximum total voting-weight of all non-verified accounts

T
′ : Total voting-weight of all non-verified accounts if Ms.Evil would not

use her sockpuppets

T : Total voting-weight of all non-verified accounts if Ms.Evil manipulates
the vote with her sockpuppets

Note that the voting options “yes” and “no” are chosen without loss of gener-
ality, i.e. “yes”/“no” could be replaced with “no”/“yes”, “proposal A”/“proposal B”,
“status quo”/“amendment C”, etc. Further note that the number of all non-
verified accounts is Syes+Sno withoutMs.Evil’s sockpuppets and Syes+Sno+n

with those sockpuppets.

5

Appendix A: A Mathematical View on the Sockpuppet Problem



The Liquid Democracy Journal44 issue 6

2.2 Premises

Let:

Tmax > 0, (14)

Pyes ∈ N, Pno ∈ N, (15)

Syes ∈ N, Sno ∈ N (16)

We further premise that the non-verified accounts without Ms.Evil’s sock-
puppets have an actual impact on the overall outcome of the vote. Keeping in
mind that “yes” and “no” were chosen without loss of generality, we do this by
assuming:

Pyes > Pno (17)

Pyes + T ′
·

Syes

Syes + Sno

< Pno + T ′
·

Sno

Syes + Sno

(18)

with
T ′ := min(Tmax , Syes + Sno) (19)

being the total voting-weight of the non-verified accounts (excluding Ms.Evil’s
sockpuppets), and

Syes + Sno > 0. (20)

T ′ is defined in such way that it is ≤ Syes + Sno (ensuring that each non-
verified account gets a voting-weight of at most 1) but also limited by Tmax (i.e.
the total voting-weight of those accounts doesn’t exceed Tmax). T

′ is then split
up equally among all non-verified accounts (see inequality 18).

2.3 Proposition 2

Given the premises stated in the previous subsection 2.2, there exists an
n ∈ N such that

Pyes + T ·
Syes + n

Syes + Sno + n
> Pno + T ·

Sno

Syes + Sno + n
(21)

with
T := min(Tmax , Syes + Sno + n) (22)

being the effective total voting-weight of all non-verified accounts including
Ms .Evil’s sockpuppets.

6

Appendix A: A Mathematical View on the Sockpuppet Problem



45The Liquid Democracy Journalissue 6

This means: If we limit the total voting-weight T (or T ′ respectively) of all
non-verified accounts to a constant but non-zero value Tmax (inequality 14 with
definitions 19 and 22), and split it up equally among all non-verified accounts,
then, for any binary yes/no decision, there exists a number of additional sock-
puppets n which Ms.Evil can add to overrule that decision (inequalities 18
and 21) if the other non-verified accounts Syes + Sno > 0 had an impact on the
overall outcome of the vote (inequalities 17 and 18).

2.4 Proof of proposition 2

From inequality (20) and n ∈ N, we know that:

Syes + Sno + n > 0 (23)

We choose n ∈ N as follows:

n := Sno + 1 (24)

Then inequality (21) can be transformed as follows:

Pyes + T ·
Syes + n

Syes + Sno + n
> Pno + T ·

Sno

Syes + Sno + n

⇔ Pyes + T ·
Syes + Sno + 1

Syes + Sno + n
> Pno + T ·

Sno

Syes + Sno + n
(25)

⇔ Pyes + T ·
Syes + 1

Syes + Sno + n
> Pno (26)

Definition (22) with inequalities (14) and (23) implies that T > 0. Because
(17) demands that Pyes > Pno, and (16) implies that Syes ≥ 0, we can easily see
that inequality (26) is true. Therefore (21) is true.

As shown in the following subsections, it is possible to provide another def-
inition for n, which yields to an even smaller number of sockpuppets in many
cases.

7

Appendix A: A Mathematical View on the Sockpuppet Problem



The Liquid Democracy Journal46 issue 6

2.5 Proposition 3

The following alternative definition of n also fulfills inequality (21) with the
given definition of T in (22) and the given premises in (14) through (20):

n := max(⌊n′⌋+ 1 , ⌈Tmax⌉) (27)

with

n′ := Sno ·
1−

Pyes − Pno

Tmax

1 +
Pyes − Pno

Tmax

− Syes (28)

Note that n′ is well-defined, because inequality (17) requires that Pyes > Pno

and (14) states that Tmax > 0.

2.6 Proof of proposition 3

From inequality (20) and n ∈ N, we know that:

Syes + Sno + n > 0 (29)

Definition (22) with inequalities (14) and (29) implies that T > 0. Knowing
T > 0, we use inequality (17) for the following estimation:

Pyes > Pno

⇔ Pyes − Pno > 0 (30)

⇔
Pyes − Pno

T
> 0 (31)

⇒ 1+
Pyes − Pno

T
> 0 (32)

Definition (27) implies n ≥ Tmax. Furthermore, it is presumed in (20) that
Syes + Sno > 0. Therefore:

Tmax ≤ n (33)

⇒ Tmax ≤ Syes + Sno + n (34)

From (22) and (34), it follows that:

T = Tmax (35)

8

Appendix A: A Mathematical View on the Sockpuppet Problem



47The Liquid Democracy Journalissue 6

Definition (27) implies that n > n′. Using the definition of n′ in (28), we
reason:

n > Sno ·

1−
Pyes − Pno

Tmax

1 +
Pyes − Pno

Tmax

− Syes

︸ ︷︷ ︸

n′

(36)

(35)

⇔ n > Sno ·

1−
Pyes − Pno

T

1 +
Pyes − Pno

T

− Syes (37)

(32)

⇔ n ·

(

1 +
Pyes − Pno

T

)

> Sno

(

1−
Pyes − Pno

T

)

− Syes

(

1 +
Pyes − Pno

T

)

(38)

⇔ n ·

(

1 +
Pyes − Pno

T

)

> Sno − Syes −
Pyes − Pno

T
· (Syes + Sno) (39)

⇔ n+
Pyes − Pno

T
· n > Sno − Syes −

Pyes − Pno

T
· (Syes + Sno) (40)

⇔
Pyes − Pno

T
· n > Sno − Syes −

Pyes − Pno

T
· (Syes + Sno)− n (41)

⇔
Pyes − Pno

T
· (Syes + Sno) +

Pyes − Pno

T
· n > Sno − Syes − n (42)

⇔
Pyes − Pno

T
· (Syes + Sno + n) > Sno − (Syes + n) (43)

(29)

⇔
Pyes − Pno

T
>

Sno − (Syes + n)

Syes + Sno + n
(44)

T>0

⇔ Pyes − Pno > T ·
Sno − (Syes + n)

Syes + Sno + n
(45)

⇔ Pyes − Pno > T ·
Sno

Syes + Sno + n
− T ·

Syes + n

Syes + Sno + n
(46)

⇔ Pyes + T ·
Syes + n

Syes + Sno + n
> Pno + T ·

Sno

Syes + Sno + n
(47)

Because inequalities (21) and (47) are identical and (27) ensures n ∈ N, we
conclude that proposition 3 is true.

9

Appendix A: A Mathematical View on the Sockpuppet Problem



The Liquid Democracy Journal48 issue 6

In other words: If Ms.Evil creates n = max(⌊n′⌋ + 1, ⌈Tmax⌉) additional
sockpuppets (definition 27) and if the other non-verified accounts would be rel-
evant for the outcome of the vote if Ms.Evil didn’t use her sockpuppets (in-
equalities 17 and 18), then Ms.Evil can overrule the overall outcome of the
vote (inequalities 18 and 21).

Note that we could still construct cases where Ms.Evil can’t gain control
over the outcome of the vote. In those cases, however, the non-verified accounts
would not have any effect on the outcome of the vote anyway, which is why
non-verified accounts could have been excluded from casting votes in the first
place.

In all cases where non-verified accounts have an actual impact on the outcome
of the vote, manipulation is possible by adding a finite number of sockpuppets.
It is therefore futile to try to curtail the sockpuppet problem by limiting the total
voting-weight of all non-verified accounts.

10

Appendix A: A Mathematical View on the Sockpuppet Problem



49The Liquid Democracy Journalissue 6

2.7 Example

We choose the following example where inequalities 17 and 18 are fulfilled,

i.e. where the non-verified voters Syes + Sno have an impact on the outcome:

Pyes = 503 Syes= 48

Pno = 497 Sno = 952

Tmax = 10

According to proposition 3, it is certain that Ms.Evil can control the out-

come of the vote with 191 sockpuppets:

n = max(⌊n′⌋+ 1 , ⌈Tmax⌉)

= max





















Sno ·
1−

Pyes − Pno

Tmax

1 +
Pyes − Pno

Tmax

− Syes













+ 1 , ⌈Tmax⌉









= max





















952 ·
1−

503− 497

10

1 +
503− 497

10

− 48













+ 1 , ⌈10⌉









= max

(⌊

952 ·
1− 6

10

1 + 6

10

− 48

⌋

+ 1 , 10

)

= max

(⌊

952 ·
4/10
16/10

− 48

⌋

+ 1 , 10

)

= max

(⌊

952 ·
1

4
− 48

⌋

+ 1 , 10

)

= max (⌊238− 48⌋+ 1 , 10)

= max (⌊190⌋+ 1 , 10)

= max (191 , 10)

= 191

11

Appendix A: A Mathematical View on the Sockpuppet Problem



The Liquid Democracy Journal50 issue 6

3 Conclusion

All voting systems where internet users may create non-verified accounts on
their own behalf are also susceptible to the creation of “sockpuppets”. Sockpup-
pets are fake identities created with malicious intent to manipulate public opinion
and/or decisions by deception. Often, the reduction of barriers is brought up as
an argument in favor of easy account creation and against proper accreditation
systems (i.e. proper user identification and verification).

However, it can be proven that at least in those cases where the non-verified
accounts have an impact on the outcome of the vote, a malicious attacker can
overrule any binary decision by simply adding a finite number of sockpuppets,
even if the voting-weight of each non-verified account is reduced to a small
but non-zero value (section 1 of this paper) or if the total voting-weight of all
non-verified accounts is limited (section 2 of this paper).

Since creation of sockpuppets already violates the democratic principle of
“one man – one vote”, these findings are only a supplementary reason for proper
accreditation in democratic processes. Refer to the book “The Principles of
LiquidFeedback” (ISBN 978–3–00–044795–2), section “Who may participate?
(And how are these people identified?)” (pages 120–124) for further reading.

12

Appendix A: A Mathematical View on the Sockpuppet Problem

This project has received funding from the European Union's
Horizon 2020 research and innovation programme under
grant agreement No 693514.



51The Liquid Democracy Journalissue 6

Appendix B: UWUM Work Report

Work report on Unified WeGovNow User
Management (UWUM) development

Jan Behrens, Axel Kistner, Andreas Nitsche, Björn Swierczek

2016-12-12

© 2016 FlexiGuided GmbH, Berlin

1 Presentation of UWUM in Berlin

A first draft of UWUM has been presented in the kick-off meeting “Connecting
The Bits” on April 14, 2016 in Berlin. The overall idea was to build a single-
sign-on (SSO) solution on OAuth 2.0’s Authorization Code1 flow.

For access tokens, the use of bearer tokens2 was proposed. Furthermore,
it was agreed on that TLS is to be used to secure all communication between
UWUM and other components.

In addition to single-sign-on, UWUM’s capabilities were planned to include:

• a style endpoint, which allows applications to retrieve style information
(e.g. a color scheme),

• a navigation endpoint, which allows applications to incorporate a common
nagivation bar into their user interfaces, and

• a service discovery endpoint, which allows applications to retrieve a list of
other applications within the system and their capabilities/protocols.

This way, WeGovNow is designed to be a modular system that may be extended
with different services which are all connected through UWUM.

It was agreed that UWUM will be implemented by LiquidFeedback such that
it is possible to use synergetic effects between the necessary creation of an API
for LiquidFeedback and the newly created features required by UWUM.

1See https://tools.ietf.org/html/rfc6749#section-1.3.1 for a short overview on

the Authorization Code flow and https://tools.ietf.org/html/rfc6749#section-4.1

for a detailed description.
2https://tools.ietf.org/html/rfc6750

1/27



The Liquid Democracy Journal52 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2 Authentication and Authorization

For reasons of interoperability and security, we aimed to create an implementation
that is fully compliant with RFC 6749.3 In this section, the extensions necessary
in addition to that document will be explained below. All functionality has been
implemented by the time of publishing this work report except where otherwise
noted.

2.1 Roles

RFC 6749 defines several roles in subsection 1.1.4 The UWUM component as
implemented by LiquidFeedback takes the role of the “authorization server”.
Other WeGovNow components will take the role of “clients” but may also act
as “resource server” for other components.

2.2 Choice of protocol flow

UWUM requires the Authorization Code flow1 for secure user authentication, i.e.
when used for single-sign-on (SSO). (Note that subsection 10.16 in RFC 6749
explains why the Implicit flow5 as defined by OAuth 2.0 is not suitable for secure
user authentication.6)

The Implicit flow5 is still supported for clients which only require authorization
but do not rely on secure user authentication (e.g. pure JavaScript clients which
access other components but do not store themselves any resources which would
need to be protected by SSO).

2.3 Types of clients

RFC 6749 distinguishes between “confidential clients” (which are capable of
secure client authentication, e.g. by maintaining confidentiality of their client
credentials) and “public clients” (which are incapable of secure client authenti-
cation). UWUM requires all clients which use OAuth 2.0’s Authorization Code1

flow (and thus receive long-lasting refresh tokens) to be capable of secure au-
thentication; i.e. every use of the token endpoint (see subsections 2.7 and 2.8)
will require client authentication (except when an access token scope downgrade

3https://tools.ietf.org/html/rfc6749
4https://tools.ietf.org/html/rfc6749#section-1.1
5See https://tools.ietf.org/html/rfc6749#section-1.3.2 for a short overview on

the Implicit flow and https://tools.ietf.org/html/rfc6749#section-4.2 for a detailed

description.
6https://tools.ietf.org/html/rfc6749#section-10.16

2/27

Appendix B: UWUM Work Report



53The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

is performed, see subsection 2.14). The use of “public clients” is only supported
for those clients which utilize the Implicit5 flow because these clients will not
handle any long-lasting tokens.

2.4 Client registration

Client registration is mentioned in section 2 of RFC 6749, even though the
standard explicitly states that “the means through which the client registers with
the authorization server are beyond the scope of [the] specification”.56 UWUM
provides two methods of client registration:

• registering clients through the municipality (or their technical administra-
tion) or an organization running a particular installation of WeGovNow,

• registration of any other (“dynamic”) client on a per-user basis by each user
who wishes to use that client to access WeGovNow (machine accessibility).

These two registration methods are described in the following two subsections
respectively.

2.4.1 Clients approved by the municipality

Clients approved by the municipality authenticate through TLS (X.509) certifi-
cates which are signed by the municipality or a certificate authority acting on
their behalf. For example, the operator of the UWUM server could issue a cer-
tificate to the operator of each respective client. Furthermore, the operator of
the UWUM server configures a list of automatically granted access scopes7 for
the particular client (not every client has the same automatically granted access
scopes, e.g. some clients might not require voting rights). Any other access scope
may be granted on a per-user basis by the respective end-user or be disallowed
by the municipality for a particular client (through white or black lists).

This results in the following information being stored per client:

• name of client,

• OAuth 2.0 client identifier (client id),

• redirect URI(s)8,

• common name (CN) of the TLS certificate,

7https://tools.ietf.org/html/rfc6749#section-3.3
8See https://tools.ietf.org/html/rfc6749#section-3.1.2 for redirection URIs.

One redirect URI is the default redirect URI, other redirect URIs may be selected through the

redirect uri parameter, see: https://tools.ietf.org/html/rfc6749#section-4.1.1

3/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal54 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

• automatically granted scopes7,

• white list of scopes (optional),

• black list of scopes (optional, i.e. may be empty).

2.4.2 Dynamic clients

For the sake of machine accessibility, it would be nice to allow unregistered
clients. Unfortunately, OAuth 2.0 requires some sort of client registration (at
least) for the following security reasons:

• allowing capability to authenticate a client,9 in order

– to avoid refresh token abuse by a third party in case of accidentially
exposed refresh tokens,10

– to avoid authorization code abuse (which could expose access and re-
fresh tokens to a malicious 3rd party) in case of exposed authorization
codes,11

• restriction of choice of the redirect URI12, in order

– to avoid redirection URI manipulation,13

– to avoid open redirector attacks.14

In order to be able to provide an open platform, however, it should still be
possible to use clients which have not been explicitly approved by the operator
of the WeGovNow platform. Assuming there will be more than one WeGovNow
installation (e.g. run by different municipalities, each operating their own system),
this is necessary in order to enable third parties to provide generic clients that
can be used by any WeGovNow platform, even those not known to the operator
of the client.

Consequently, registration of these clients should happen dynamically without
further human interaction.15 This requires to automatically establish a channel

9See https://tools.ietf.org/html/rfc6749#section-2.3 and https://tools.

ietf.org/html/rfc6749#section-10.1
10https://tools.ietf.org/html/rfc6749#section-10.4
11https://tools.ietf.org/html/rfc6749#section-10.5
12https://tools.ietf.org/html/rfc6749#section-3.1.2
13https://tools.ietf.org/html/rfc6749#section-10.6
14https://tools.ietf.org/html/rfc6749#section-10.15
15We assume that every user of WeGovNow is legally entitled to use any client of his or her

choice to access his or her data and to perform actions. In cases where a particular operator
of LiquidFeedback (e.g. a municipality) wants to decline this right, the use of dynamic clients
could be disabled.

4/27

Appendix B: UWUM Work Report



55The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

of trust between the client and the UWUM server through secure authentication.
UWUM relies on the following mechanism to archive secure authentication of a
dynamic client:

• a dynamic client is only referenced by its domain, and

• at the choice of each client, registration is performed either

– by adding a certain entry to the domain’s DNS zone16 or

– temporarily through a REST API call to the UWUM server with a
client-side TLS (X.509) certificate issued to the respective domain
and signed by a publicly trusted certificate authority (e.g. “Let’s En-
crypt”)17.

Taking into account that it cannot be outruled that TLS certificates could
accidentially be exposed to a malicious 3rd party and considering that there might
be at least one publicly trusted CA which is vulnerable to a state-level attack,18

we restrict the redirection URI12 to the following static path on the web server’s
root level:

/liquidfeedback client redirection endpoint

This repels any attempts of “authorization code redirection URI manipulation”
as explaiend in subsection 10.6 of section 10 (“Security considerations”) of
RFC 6749 (“The OAuth 2.0 Authorization Framework”)13 even in cases where
dynamic client registration could be forged.

Any client that cannot follow the above redirection URI convention must be
registered by the municipality or organization running a particular installation of
WeGovNow (see subsection 2.4.1).

As an additional security mechanism, the dynamic registration is always done
for a set of access token scopes7 to be used with a particular OAuth 2.0 flow.
Thus a client’s redirection endpoint registered for the Authorization Code flow
cannot be used by the Implicit flow or vice versa unless the registration is broad-
ened accordingly.

16A TXT DNS resource record needs to be added to the subdomain
“ liquidfeedback client” of the respective domain which must include a so-called
magic string (namely “dynamic client v1”) as first entry.

17The operator of LiquidFeedback is therefore required to decide on a list of trusted CA’s.
Many operating systems already ship with such a list of root certificates.

18Note that similar security considerations also apply to DNS and the risk of DNS cache
poisoning or similar attack vectors. This could, however, be fixed by DNSSEC such that future
versions of UWUM might lift the described restrictions for domains which are cryptographically
secured.

5/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal56 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

The operator (e.g. a municipality) may still decide to disallow the use of
non-approved (dynamic) clients completely. This would, however, limit machine
accessibility and render the platform less open for extensions and unforseen use
cases. An appropriate configuration option will be provided which can also be
used to limit the access token scope of dynamic clients (using a white or black
list).

Unless dynamic clients are entirely disabled, an additional security warning
will be displayed to the user when authorizing such a client. The user will be
requested to verify that:

• the client domain is trustworthy,

• the client domain is used to host a legit application to access LiquidFeed-
back,

• the spelling of the domain name (whose client is going to be authorized)
is correct,

• the granted scope of access (access token scope) is intended by the user.

Clients which want to avoid these warnings must be approved by the munici-
pality or organization that is operating the LiquidFeedback system (see subsec-
tion 2.4.1).

2.5 Access token types

As previously mentioned, bearer tokens2 as defined in RFC 6750 will be used as
access tokens. Therefore, the access token type (“token type”)19 returned by
UWUM is always set to “bearer”.

2.6 Access token scopes

The following set of generic20 access token scopes7 has been specified:

authentication: Authenticate the current user by reading its unique static ID
and current screen name.

19https://tools.ietf.org/html/rfc6749#section-7.1
20Application specific scopes could be introduced if they turn out to be necessary in the

future. It would also be thinkable for dynamic clients acting as a resource server to provide a

set of application specific scopes as part of their registration. Further security analysis would

be required for such an extension. See also subsection 5.8 for considerations on generic versus

application specific scopes.

6/27

Appendix B: UWUM Work Report



57The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

identification: Identify the current user by reading its unique identification
string. Automatically implies scope “authentication”.

notify email: Read the notification e-mail address of the current user.

read contents: Read any user generated content (without authorship, ratings
and votes).

read authors: Read the author names of user generated content (author’s
static ID and screen name).

read ratings: Read ratings (see scope “rate” below) by other users.

read identities: Read the identities (identification strings) of other users.

read profiles: Read the profiles of other users (e.g. phone number, self-
description, etc).

post: Post new content.

rate: Rate user generated content (e.g. thumbs up/down, “+1”, support an
initiative, rate a suggestion).

vote: Finally vote for/against user generated content in a decision (e.g. vote on
an issue in LiquidFeedback)

profile: Read profile data of current user (e.g. phone number, self-description,
etc).

settings: Read current user’s settings (e.g. notification settings, display con-
trast, etc).

update name: Modify user’s screen name.

update notify email: Modify user’s notification e-mail address.

update profile: Modify profile data (e.g. phone number, self-description, etc).

update settings: Modify user settings (e.g. notification settings, display con-
trast, etc).

Note that any of these scopes can also be suffixed with “ detached” to request
the scope for usage also when the user is not logged in (which will be explained
in subsection 2.9).

7/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal58 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.7 User authentication (single-sign-on)

OAuth 2.0 by itself is not suitable for user authentication. Both the Authorization
Code flow1 and the Implicit flow5 can be extended to provice user authentica-
tion and thus allow to implement a single-sign-on (SSO) system. Because the
Implicit flow would require additional security mechanisms to be implemented at
client side (where bad implementations result in security vulnerabilities),6 UWUM
extends the Authorization Code flow for the purpose of implementing an SSO
solution as described in the following.

In order to protect against authorization code substitution attacks, the UWUM
server checks the OAuth 2.0 client identity before accepting an authorization
code.21 This is both a requirement stated in subsection 4.1.3 of RFC 6749
(“The OAuth 2.0 Authorization Framework”)22 and a recommended counter-
measure to avoid authorization code substitution attacks in subsection 4.4.1.13
of RFC 6819 (“OAuth 2.0 Threat Model and Security Considerations”)23.

The Access Token Response24 of the OAuth 2.0 Authorization Code flow
gets extended with the field “member id” which returns the LiquidFeedback
member ID of the signed-in user. OAuth 2.0 clients not aware of this extension
are requested to ignore this field as stated in subsection 5.1 of RFC 6749.25

Nonetheless, these clients may still pass the returned access token to the validate
endpoint (see next section) in order to determine the member id of the user who
has logged in.

2.8 Endpoints

RFC 6749 defines two endpoint URIs at the authorization server side: the “autho-
rization endpoint”26 and the “token endpoint”27. These are defined as follows:

• https://server name/api/1/authorization (GET)

• https://server name/api/1/token (POST)28

Note that a base path may be appended to the server name component if appli-
cable.

21Note that, if the client is authenticating with the UWUM server, the client id parameter
can be ommitted by the client when accessing the token endpoint (see next footnote).

22https://tools.ietf.org/html/rfc6749#section-4.1.3
23https://tools.ietf.org/html/rfc6819#section-4.4.1.13
24https://tools.ietf.org/html/rfc6749#section-4.1.4
25https://tools.ietf.org/html/rfc6749#section-5.1
26https://tools.ietf.org/html/rfc6749#section-3.1
27https://tools.ietf.org/html/rfc6749#section-3.2
28The server name for the token endpoint may differ for those requests where TLS client

certificates are used. See subsection 5.2 for explanation.

8/27

Appendix B: UWUM Work Report



59The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

RFC 6749 does not specify any method for a resource server to “ensure that
an access token presented to it by a given client was issued to that client by the
authorization server”.29 Therefore, an additional validation endpoint has to be
specified:

• https://server name/api/1/validate (POST)

The validation endpoint does not require any parameters except the access token
(bearer token) to be passed using the mechanisms described in section 2 of
RFC 6750.30 It returns a JSON object with the following fields:

– scope: a space separated list of scopes7 associated with the access token
(with any “ detached” suffix stripped off, see next subsection 2.9),

– member id: an integer set to the id of the user who logged in,

– logged in: a boolean set to false if the user has meanwhile logged out.

Note that the scope of an access token may change when the user logs out. This
is explained in the following subsection 2.9. Subsection 2.12 will pick up the
issue of user logout again.

There may be situations where an OAuth 2.0 client wants to check whether
a user is currently logged in without actually forcing the user’s web browser
to perform a login if no user was logged in. To provide this functionality, a
4th endpoint (also out of scope of the OAuth 2.0 specification) is added at the
authorization server side:

• https://server name/api/1/session (POST)

This “session” endpoint can be accessed directly by a user’s web browser (through
a script performing a CORS31 HTTP request with credentials). Its usage is
further explained in subsection 2.10.

2.9 Binding lifetime of access and refresh tokens to a users

web session by default

Access tokens have an expiry time after which they will be invalidated.32 In
addition to the maximum access token lifetime returned in the Access Token
Response,24 UWUM additionally limits the lifetime of both access tokens and

29See section 10.3 of the RFC: https://tools.ietf.org/html/rfc6749#section-10.3
30https://tools.ietf.org/html/rfc6750#section-2
31Cross-origin resource sharing, see https://www.w3.org/TR/cors/
32https://tools.ietf.org/html/rfc6749#section-5.1

9/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal60 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

refresh tokens to the user’s web session at the LiquidFeedback (UWUM) server
by default (i.e. if the user logs out, the access tokens and refresh tokens will be
immediately invalidated).

Some clients, however, require access longer than the user’s login session. For
this purpose, access token scopes7 with the suffix “ detached” may be requested
(e.g. “vote detached” instead of “vote”). Whether an application may request
these scopes (as well as which scopes may be requested for detached access)
depends on the configuration for the particular client, or – in case of dynamic
clients – on the configuration for all dynamic clients. An access or refresh token
that contains only detached scopes will not be invalidated on user logout. Access
tokens, however, will still be invalidated when their expiry time (as denoted by the
“expires in” field in the Access Token Response24) has elapsed, in which case
a refresh token must be used to obtain a new access token. Access and refresh
tokens which contain both detached and non-detached scopes will only have
their non-detached scopes removed on user logout instead of being invalidated
completely.

Other than the behavior described above, the “ detached” scopes behave as
any other scope for the authorization26 and token27 endpoint. Only the validation
endpoint (“api/1/validate”) will strip the suffix “ detached” from the scope
field in its response because it doesn’t matter for a validating resource server
whether a scope has been granted detached from a web session or not.33

Even if the token lifetime is bound to the web session (i.e. when only non-
detached scopes are requested), a user’s logged in web browser may still auto-
matically re-authorize the client whenever he or she is logged in at UWUM and
visits the client’s website. If such a client was authorized by the user, the per-
mission can be revoked by the user at any time using a designated configuration
dialog provided by the UWUM server.

2.10 Checking user login without triggering a login

An interactive UWUM client application may want to determine whether a user
is logged in without actually triggering a login. OAuth 2.0 does not provide such
a mechnaism on its own.34 UWUM therefore provides an additional “session”
endpoint (https://server name/api/1/session, see subsection 2.8) to allow

33Neither RFC 6749 nor RFC 6750 are violated because the authorization and token endpoint

treat detached scopes like any other scope and a validation endpoint is not covered by these

RFCs.
34Also, extending the authorization endpoint by accepting a “prompt” parameter as done by

OpenID Connect is not feasible for user-registered clients because non-logged-in users could

be redirected to malicious clients registered by other users, making the system susceptible to

open redirector phishing attacks. See subsection 5.5

10/27

Appendix B: UWUM Work Report



61The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

web applications to gather information about the current login status of a user
without actually triggering any (interactive) login or permission grant procedure.
This endpoint is directly accessed by the user’s web browser through an XML-
HttpRequest (XHR) call while setting the “withCredentials” option of the
XMLHttpRequest object to true.

The call does not need any parameters and should not have any additional
request headers set35. It returns a JSON object with the “member id” attribute
set to the ID of the current user (or to null if there is no logged-in user or
if a user-registered client is not authorized to obtain the login status). Since
the request is done by the user’s web browser, the answer is not authoritative
for the UWUM client and must only be used as a hint. A returned user ID

MUST still be confirmed via the regular OAuth 2.0 procedure using the

authorization endpoint! In this case, the authorization endpoint will not show
a login window (because the user is already logged in).36

2.11 Caching the login state

A successful user authentication could be cached in the session store of the
UWUM client (usually at the web server side in conjunction with a cookie).
This, however, can create confusion for the user because he or she might show
up as being logged into the system after having logged out or vice versa. A
possible solution is to use the “session” endpoint as discussed in the previous
subsection 2.10 through a JavaScript which then notifies the server side of the
UWUM client by redirecting the web browser if a reconfirmation of the user’s
login status is necessary.

In either case, UWUM clients should reconfirm that the user has not logged
out at least immediately before any state changing request (e.g. posting, rating,
voting, etc.) by using the validation endpoint (see subsection 2.8). This check
cannot be done directy by the web browser due to security reasons (as also
explained in the previous subsection 2.10).

35Not setting additional request headers avoids CORS pre-flight requests, see https://www.

w3.org/TR/2014/REC-cors-20140116/#cross-origin-request-with-preflight-0
36There is a chance for a race-condition if the user simultaneously logs out. This could be

solved by returning an authorization code through a CORS call. However, implementation of

such a protocol is out of scope for WeGovNow and would require further security analysis.

11/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal62 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.12 Logout

2.12.1 Checking for logout

As explained in subsection 2.9, an access or refresh token is automatically inval-
idated on logout if only non-detached scopes have been requested. For all other
cases, the “logged in” boolean field returned by the validation endpoint (see
subsection 2.8) may be used to detect a logout by the user.

The “session” endpoint (as further explained in subsection 2.10) may also
be used to check whether a user might have logged out (without consuming
much resources on the server-side of the UWUM client).37 Note, however, that
a request from the web browser to the session endpoint is not suitable for the
UWUM client application to validate that a user is really logged in or to securely
confirm that his or her session has really ended (see subsection 2.10).

2.12.2 Performing logout

Depending on design criteria, logout could be performed either

• through a direct link in the UWUM navigation bar or

• through a link in the UWUM navigation bar which leads to a user page
where there is a second link for the actual logout procedure.

Technical implementation requirements differ for these two cases. In the first
case, the logout is performed in the context of any UWUM client; while in the
second case, the final logout link or button can be displayed in the context of
a web page returned by the UWUM server (which is a different origin). Due to
protection against cross-site-request-forgery (CSRF), an appropriate access token
or dedicated logout token would need to be part of the link in the first case (the
case of using a direct link for logout). In this case, an appropriate OAuth 2.0
access token scope would need to be added to avoid unwanted exposure of the
logout token (or an access token with respective scope).

A decision on this issue has not been taken yet; user interface design con-
siderations and technical security considerations should determine which of the
discussed two approaches is more suitable. Also refer to subsection 5.10, which
discusses certain design limitations due to privilege separation.

37A future extension of UWUM could also allow UWUM clients (or their JavaScript compo-
nents at the web browser side) to issue a request which is held open by the UWUM server for
a set amount of time in order to allow pushing a change of the user’s login status just-in-time
(see also subsection 5.4).

12/27

Appendix B: UWUM Work Report



63The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.13 Requesting several access token scopes at once

To avoid unnecessary delays, a client may (as an extension to RFC 6749) request
several access token scopes7 (i.e. sets of access ranges) at once by using the
parameters “scope1”, “scope2”, etc. in the Authorization Request. The corre-
sponding result parameter “access token” will have “1”, “2”, etc. appended
to its name (e.g. “access token1” etc.). Note that counting must start with “1”.
It is, however, allowed to include an optional non-numbered “scope” parameter
in addition to “scope1”, “scope2”, etc. The result parameters “token type”
and “expires in” are never numbered or duplicated due to size limitations in
the Implicit flow (maximum URL length) but always relate to all returned access
tokens.

The described behavior of this subsection is not part of OAuth 2.0. Using
this extension is entirely optional for the client.

2.14 Downgrading access token scopes

As an extension to RFC 6749, the token endpoint has been extended in such
a way that it can be used to downgrade access token scopes. This feature is
important for meta-APIs because according to RFC 6749, the only way to obtain
a new access token without the user’s web browser is to provide a refresh token to
the token endpoint.38 Refresh tokens, however, are bound to a particular client
and must not be shared by the client with any other party but the authorization
server.39

A meta-API might receive an access token with a broader scope7 than the
scope necessary for calls made by the meta-API provider to another resource
server. Using a greater scope than necessary for calls to resource servers, however,
weakens the overall security of the system. In order to allow meta-API providers
to downgrade the scope prior to using the access token, the token endpoint27

accepts the string “access token” as value for the “grant type” parameter,
which will tell the UWUM server that an access token (and not an authorization
code or refresh token) is being presented to receive a new access token with a
downgraded scope. The access token has to be provided according to the rules
stated in section 2 of RFC 6750,30 and one or more scopes must be requested
through the “scope”, “scope1”, etc. parameters (see subsection 2.13 for details
on requesting several scopes at once). Client authentication is not required. The
old access token with the broader scope will not be invalidated and may still
be used in future requests (e.g. to receive another access token with a different
scope).

38https://tools.ietf.org/html/rfc6749#section-6
39https://tools.ietf.org/html/rfc6749#section-10.4

13/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal64 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

For security reasons, downgrading an access token scope will never extend
the token lifetime, i.e. the returned access token will have the same remaining
maximum lifetime than the access token presented to the token endpoint.40

2.15 Additional measures to prevent refresh token abuse

Conforming with section 10.4 of RFC 6749,41 the UWUM server (LiquidFeed-
back) ensures that refresh tokens are bound to the client they have been issued
to. As also suggested in subsection 10.4 of RFC 6749, further means to restrict
refresh token abuse are implemented. Refresh tokens are replaced periodically
and using a refresh token invalidates the corresponding scope7 of all other previ-
ously issued refresh tokens, with the exception that refresh tokens which are still
bound to a logged in user are unaffected.42 An additional grace period avoids
problems due to race conditions or aborted connections. This approach is sim-
ilar to the example given in subsection 10.4 of RFC 6749 while being resistant
against accidental race-conditions or connection aborts and allowing for a more
flexible usage (e.g. different subsystems of the same client may store different
refresh tokens indepenently).

2.16 Required CORS support for resource servers

Because RFC 6750 requires bearer tokens2 to be accepted through the HTTP
header “Authorization”,43 and because the “Authorization” header is not in
the list of “simple response headers” as defined by the W3C recommendation on
cross-origin resource sharing,44 it is inevitable for all resource servers to support
cross-origin resource sharing (CORS) with the respective “Access-Control-
Allow-Headers” option45 set to be able to fulfill the requirements of RFC 6750.
Every UWUM component acting as a resource server should therefore enable and
configure CORS accordingly. See https://www.w3.org/TR/cors/ for details.

40This is the reason why client authentication would not grant any extra security here and

thusly can be omitted.
41https://tools.ietf.org/html/rfc6749#section-10.4
42This is implemented by downgrading “ detached” scopes to their corresponding non-

detached scopes.
43https://tools.ietf.org/html/rfc6750#section-2.1
44https://www.w3.org/TR/cors/#terminology
45https://www.w3.org/TR/cors/#access-control-allow-headers-response-header

14/27

Appendix B: UWUM Work Report



65The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.17 HSTS

We recommend to use HTTP Strict Transport Security (HSTS)46 for all WeGov-
Now components to increase security.

3 Additional endpoints for integration

Beyond user authentication and authorization, three more API endpoints are
being defined for backend and UI integration:

• a “navigation” endpoint to incorporate a navigation bar,

• a “style” endpoint to retrieve style information, and

• a “client” endpoint for applicaton and service discovery.

Prototypes for the navigation and style endpoint have been implemented; the
client endpoint for application and service discovery is currently only a stub.

3.1 Navigation endpoint

In order to integrate all WeGovNow applications in such a way that they look
and feel like a single application, all WeGovNow applications share a common
navigation bar. The “navigation” endpoint of the UWUM server returns this
navigation bar to be included by each WeGovNow application. This way, modi-
fications to the navigation bar can made at a central place without the need to
change every single application.

Either a login button or the user name with a link to a user page (where
logout is possible) is included in the navigation bar, depending on whether an
access token is provided when calling the endpoint.47 For the login button, an
alternative URL may be provided by the caller of the navigation endpoint. This
login URL may either be the authorization endpoint of the UWUM server with
an appropriate “state” HTTP GET parameter included (note that the value
must be percent-encoded48) or an URL provided by the UWUM client which
initiates the OAuth 2.0 authorization and authentication procedure as described
in section 2 of this document. Alternatively a unique placeholder (e.g. a GUID)

46https://tools.ietf.org/html/rfc6797
47Also a dynamic popup menu is thinkable. However, issues with JavaScript and privi-

lege separation in case of animated submenus according to Material Design require further

consideration. Refer to subsection 5.10 in that matter.
48https://tools.ietf.org/html/rfc3986#section-2.1

15/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal66 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

can be passed as login URL to allow caching of the rendered navigation bar and
replacing the login URL locally at the UWUM client.49

Whether a structured JSON document or a pre-rendered HTML snippet is
returned can be selected by another parameter passed to the navigation endpoint.
A pre-rendered HTML snipped may be either returned encapsulated in a JSON
response or raw for usage with the HTML5 include tag.

When the “client id” parameter is provided to the navigation endpoint,
the corresponding client tab gets highlighted (or marked as active in case of the
structured JSON document response).

It is planned to collapse the navigation bar on small screens. This feature
might interfere with application specific menus; refer to subsection 5.12 for that
matter.

3.2 Style endpoint

The style endpoint provides basic color definitions for a primary and an accent
color as 8-bit RGB triplet to be able to customize the unified visual look of
all WeGovNow applications for a particular installation by central configuration.
Additional colors can be derived from these two base colors. If the UWUM
server gets configured with colors from the Material Design color palette, the
corresponding Material Design color name of the primary and the accent color is
also provided.

3.3 Endpoint for application and service discovery

The endpoint “client” is supposed to return a list of all system applications
and, if an access token is provided, a list of all registered dynamic clients for the
corresponding user. Implementation of this endpoint will require storing the base
URL of all system applications at the UWUM server.

Further discussion with OntoMap is required for specification and implemen-
tation of this endpoint.

4 Test platform

A test platform has been created in mid September to start integration with the
other consortium partners.

49Note that the characters “<”, “>”, “&”, as well as the quotation mark character should be

avoided in a placeholder string because these characters would get HTML entity encoded as

described in subsection 8.1.4 of the HTML5 standard, see: https://www.w3.org/TR/html5/

syntax.html#character-references

16/27

Appendix B: UWUM Work Report



67The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

4.1 Benchmarks

The following benchmarks for integration have been defined, whose fulfillments
have been published in the weekly status reports.

Client URLs established A client application (resource server and/or relying
party) has been installed and its base URL and redirection endpoint50 has
been communicated to the consortium.

SSL key and certificate for end-users A private key and a publicly trusted
SSL certificate has been created for the end-user web interface and SSL
connections to that interface have been successfully tested.

Certificate signing request (CSR) for UWUM API A private key for ac-
cessing the UWUM API and a corresponding certificate signing request
(CSR) has been created and submitted to FlexiGuided GmbH (LiquidFeed-
back).

SSL certificate for UWUM API A signed certificate for the UWUM API client
key has been sent back to the consortium member and their client appli-
cation has successfully established a secured connection with the UWUM
server.

Authorization endpoint accessed The client application can redirect an end-
user to the UWUM authorization endpoint.51

Authorization endpoint error response handling The client application is ca-
pable of receiving authorization errors52 through its redirection endpoint50

and displaying it to the end-user.

Access token request (including end-user identification) The client appli-
cation has successfully received an authorization code and identified the
end-user through an access token request.53

Access token request error handling The client application is capable of prop-
erly processing errors during the access token request.54

Using access tokens for API calls to other components The client appli-
cation has successfully used an access token to perform a LiquidFeedback
API call.

50https://tools.ietf.org/html/rfc6749#section-3.1.2
51https://tools.ietf.org/html/rfc6749#section-4.1.1
52https://tools.ietf.org/html/rfc6749#section-4.1.2.1
53https://tools.ietf.org/html/rfc6749#section-4.1.3
54https://tools.ietf.org/html/rfc6749#section-5.2

17/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal68 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

Access token verification The client application is capable of verifying the
validity and scope of an access token.

Accepting access tokens from other components The client application pro-
vides at least one API call where an access token is used for authorization.

Accepting access tokens as “Authorization” header In conformance with
RFC 6750 (Bearer Token Usage), the client application (resource server)
accepts access tokens through the authorization request header field.55

Cross-origin resource sharing The client application allows cross-origin re-
source sharing (CORS) as described in subsection 2.16 of this document.

Cross-application navigation The UWUM navigation bar has been success-
fully integrated into the client application.

IPv6 IPv6 capabilities have been tested.

5 Technical challenges

In this section, we will describe obstacles encountered during implementation and
during integration with the consortium partners as well as respective solutions.

5.1 Third party clients (non-registered clients vs. dynamic
registration)

OAuth 2.0 demands client registration but does not specify how such client
registration is to be implemented.

“Before initiating the protocol, the client registers with the autho-
rization server. The means through which the client registers with
the authorization server are beyond the scope of this specification
but typically involve end-user interaction with an HTML registration
form.”56

Manual client registration, however, is only suitable for a service-centered
approach where a software provides only a single service (e.g. Facebook, Google,
Twitter, etc). An open source solution, however, could be installed at several
sites by different service providers. It is therefore not sufficient to register a client

55https://tools.ietf.org/html/rfc6750#section-2.1
56Ed. D. Hardt: The OAuth 2.0 Authorization Framework, October 2012. Section 2 (Client

Registration), https://tools.ietf.org/html/rfc6749#section-2

18/27

Appendix B: UWUM Work Report



69The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

at a single service provider if this client shall be usable for any service provider
using the UWUM server software.

One possible solution would be the creation of a central (i.e. world-wide)
UWUM client registry. Such central client registry, however, could be a single
point of failure and would empower a central authority to control usage of the
UWUM protocol (e.g. it would be possible to block certain clients). We consider
this approach contrary to the concepts of open source and open data.

Therefore, we implemented a dynamic client registration protocol that keeps
implementational complexity at a minimum while providing good security prop-
erties which outperforms many other solutions for client registration due to re-
quiring direct access to the DNS zone of the domain (for adding a TXT record)
or credentials (a publicly trusted TLS certificate with corresponding key) that
should be accessible only by the domain owner. Dynamic client registration is
described in subsection 2.4.2 of this document.

5.2 TLS client side certificates and web browser behavior

Web server software often offers three different settings for handling TLS client
certificates:

• client-side certificates disabled,

• optional client-side certificate,

• mandatory client-side certificate.

Often these settings can be made only on a per-domain basis (i.e. for each virtual
host). Furthermore, enabling client-side certificates (even if set to “optional”)
will cause web browsers to show up a dialoge when accessing pages on that
domain.

For these reasons, a separate hostname has to be used for API endpoints
when a TLS client-side certificate is to be provided (which affects the token end-
point27). The UWUM server will have to provide a configuration endpoint where
dynamic clients may retrieve a deviant domain for the token endpoint; and dy-
namic UWUM clients (see subsection 2.4.2) will have to query this configuration
endpoint prior to using the token endpoint).

5.3 Multi-domain certificates

TLS certificates may be issued for more than one domain using the “Subject
Alternative Name” (SAN) extension. The current implementation of Liquid-
Feedback, however, relies on an HTTP reverse proxy to include the distinguished

19/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal70 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

name (DN)57 of the certificate in a designated HTTP header. Some reverse proxy
software, namely “NGINX” which is recommended for use with LiquidFeedback,
does not properly support transmitting a domain list from the SAN extension. In
case of “NGINX”, header line folding58 is used to pass multiple domain names
from a TLS certificate to the respective backend (e.g. LiquidFeedback). Header
line folding, however, has recently been deprecated by RFC 7230,59 and it is not
supported by LiquidFeedback (and not even by “NGINX” for incoming requests).
The problem of header line folding in the context of multi-domain TLS certifi-
cates has also been discussed in the “NGINX” issue tracker under ticket #857.60

The issue is currently not classified as bug61 and it is unclear when a patch will
be incorporated into the software.

For the technical difficulties explained above, we refrained from supporting
multi-domain certificates at this stage. In case of UWUM clients approved by the
municipality or operator of LiquidFeedback, this shouldn’t be a problem anyway
because the certificate authority will be under the control of the operator, such
that it is easy to create a certificate using the DN/CN property. For dynamically
registered clients, an alternative mechanism using DNS TXT records is available
(see subsection 2.4.2).

If multi-domain certificates are supported in the future, it is vital that the
token endpoint requires the “client id” parameter to be set for all clients au-
thenticating with such a multi-domain certificate. This way, code substitution
attacks23 can be repelled. (Note that RFC 6749 requires the “client id” pa-
rameter to be set only if the client is not authenticating with the authorization
server;22 but this does not work for multi-domain certificates.)

5.4 Outdated logins

While a successful OAuth 2.0 authorization procedure (using the Authorization
Code flow1) can be used to confirm that a user is logged in at the particular time
of the Access Token Response24, an UWUM client obviously can’t assume that
the login will be still valid at any later time.

UWUM currently provides two methods to check if a user has logged out;
these are explained in subsection 2.12.1 of this work report. Considerations in re-
gard to purposeful caching of the user’s login status are found in subsection 2.11.

Even if no caching of the login status is performed, there is still the possibility
that a user opens WeGovNow with two different browser windows or browser tabs.

57The DN contains a single domain as CN (common name).
58https://tools.ietf.org/html/rfc2616#section-2.2
59https://tools.ietf.org/html/rfc7230#appendix-A.2
60https://trac.nginx.org/nginx/ticket/857
61https://trac.nginx.org/nginx/ticket/857#comment:2

20/27

Appendix B: UWUM Work Report



71The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

He or she might then log out in one window and afterwards switch to the other
window where the logout has not been noticed yet, which creates confusion for
the user. A possible solution is to regularly check if the user has logged out by
utilizing the cross-origin-resource-sharing (CORS) XML-HttpRequest (XHR) as
explained in subsection 2.10.

Regular requests to detect logouts, however, cause unnecessary resource con-
sumption for all involved components. A better approach would be to have a
permanent TCP connection between the web browser and the UWUM server (or
alternatively between the UWUM client and the UWUM server if at the same
time there is a permanent connection between the web browser and the UWUM
client). There are different technologies thinkable for this approach. One method
is to keep an XML-HttpRequest open for a set amount of time during which the
server is capable of sending a message directly to the web browser. (The request
has to be repeated after timeout or after a message has been received, whichever
happens first.) Another technique would be to use WebSockets. None of these
additional techniques have been implemented yet.

5.5 Susceptibility to open redirector phishing attacks when

allowing login checks through web browser redirection

Subsection 2.10 mentioned that an interactive UWUM client application may
want to determine whether a user is logged in without actually triggering a login.
OAuth 2.0 does not provide such a mechnaism on its own, and our research
concluded that any form of redirection-based mechanism for providing this func-
tionality62 would be susceptible to open redirector phishing attacks as described
in subsection 4.2.4 of RFC 6819 (“OAuth 2.0 Threat Model and Security Consid-
erations”)63 as long as third parties are capable of registering a malicious client
with a corresponding redirection URI12 that is under the control of the third
party.

The previously mentioned subsection of the threat model and security con-
siderations document (RFC 6819) suggests client registration with redirect URI
registration (and avoiding redirects to any non-registered redirect URI)64 as only
countermeasure for this threat. However, this countermeasure only works when
manual client registration (and manual approval through the operator of the
UWUM server) is mandatory. It particularly fails if dynamic client registration
(e.g. as described in subsections 2.4.2 and 5.1 of this work report) is allowed.

62e.g. accepting a “prompt” parameter as done by OpenID Connect, see http://openid.

net/specs/openid-connect-core-1_0.html#AuthRequest
63https://tools.ietf.org/html/rfc6819#section-4.2.4
64https://tools.ietf.org/html/rfc6819#section-5.2.3.5

21/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal72 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

Luckily, the technique of cross-origin resource sharing (CORS) allowed for the
development of an alternative to the redirect-based approach. Subsection 2.10
explains the mechanism.

5.6 Handling of updated user related data (e.g. user’s e-

mail addresses)

When a WeGovNow application wants to send notification e-mails to users, it
is not adequate to retrieve the e-mail address only once from UWUM as the
notification e-mail can be changed by the user at any time. Such a change
needs to be reflected by all applications using this e-mail address. Therefore
an application needs to retrieve the current notification e-mail address directly

before using it, in fact again before every usage.
For that purpose, another API endpoint /api/1/notify email (GET) can

be used (using an access token with the “notify email” scope). To be able
to retrieve the e-mail address while the user is not currently logged in, it will be
necessary to request the “notify email detached” scope when identifying the
user and to store the received refresh token permanently. The suffix “ detached”
requests a scope for detached usage, i.e. for usage even after the user logs out.65

Similar situations can occur related to other member properties stored in one
application but used in another one, e.g. the screen name. But these seem not to
be as critical as to avoid using an outdated e-mail address. Such properties could
be cached for a limited time before retrieving them again from the application
storing this property.

5.7 Race conditions with refresh token rotation

As suggested in subsection 10.4 of RFC 6749,41 refresh token rotation is employed
to provide better security properties (e.g. in case of exposed refresh tokens and
client certificates, or in case of the existence of a single compromized certificate
authority which would render authentication of dynamic clients insecure).

Unfortunately, RFC 6749 does not specify how old refresh tokens are invali-
dated. Section 6 of RFC 6749 only says that66

• the authorization server MAY issue a new refresh token, in which case

• the client MUST discard the old refresh token and replace it with the new
refresh token, and

65Note that when exchanging a refresh token for an access token after the user has been
logged out, an UWUM client must also explicitly request the ”* detached” scope(s) it needs,
e.g. “notify email detached” using the scope parameter of the /api/1/token endpoint.

66https://tools.ietf.org/html/rfc6749#section-6

22/27

Appendix B: UWUM Work Report



73The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

• the authorization server MAY revoke the old refresh token.

Always revoking the old refresh token after transmission can have a bad effect
on system stability, considering that responses might be interrupted. Further-
more, multiple backends of an UWUM client could simultaneously access the
token endpoint. Such legit accesses by two legit backends of the same client
would need to be distinguished from accesses by a legit client and a malicious
third party who obtained a copy of a refresh token.

Subsection 2.15 explains the mechanisms employed by the UWUM server to
mitigate the risk of refresh token abuse while solving the problems stated above.

5.8 Creating a set of suitable access token scopes

A useful set of access token scopes7 is a vital aspect of privilege separation. From
a security point of view, scopes should be as fine-graded as possible, particularly
there should be different scopes for different applications (e.g. an application
that wishes to rate user contributions in application X does not need an access
token that allows to rate user contributions in application Y). Extensibility, on the
other hand, would be complicated if access token scopes always refer to a single
application (i.e. a single resource server in this context). Furthermore, it is a goal
that the WeGovNow platform looks and feels like a single integrated application.
When users grant access scopes to third party clients, such application-based
scopes would be difficult to understand for the user, which by itself can have bad
influence on the overall system security.

We therefore decided to provide a set of generic access token scopes as listed
in subsection 2.6. For future extensions, see footnote 20.

5.9 Misconceptions regarding scopes vs. user privileges

Scopes must not be mistaken for user privileges. I.e. a scope does not grant a
privilege to a user; it just means an application can trigger an action within the
scope if the user is authorized to perform the action. For example, an application
needs the scope “vote” to cast a vote on behalf of the user but casting a vote
will only work if the user has the necessary voting privileges.

Programmers of UWUM clients must keep these differences in mind and
execute an action only if both the scope and the users privileges are sufficent for
the respective action.

23/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal74 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

5.10 JavaScript integration and privilege separation

Dynamically sharing JavaScript code between UWUM clients or between the
UWUM server and an UWUM client violates privilege separation because it would
enable one component to execute code in the security context of another origin.
For example, one application ‘A’ could send a harmful JavaScript to be included
in a web page returned by another application ‘B’ which then discloses the session
cookie for application ‘B’ to application ‘A’.

For this reason, the common navigation bar as returned by the navigation
endpoint (see subsection 3.1) currently does not include any JavaScript code.
UWUM clients may therefore even consider to sanitize the returned HTML code
in such a way that any JavaScript is removed or rejected.

Interface design decisions, however, might suggest to use JavaScript for the
navigation bar. Material design, for example, requires popup-menus to be ani-
mated, which cannot be done with CSS alone. Another reason for JavaScript
might be dynamic modifications of the navigation bar (e.g. collapsing the nav-
igation bar to a menu icon) depending on the screen size or the device of the
user. Also other integration techniques might suggest the use of JavaScript.

An alternative to dynamically provided JavaScripts by the UWUM server
would be a common library to be included locally by each WeGovNow component.
Whenever this library is updated, administrators of each component can look
over it before incorporating it. While this approach provides proper privilege
separation, its downside would be the administrative overhead.

At least in regard to the navigation bar, it would eventually need to be decided
whether

• there will be no JavaScript used by the navigation bar,

• the UWUM server will dynamically return JavaScript code for the naviga-
tion bar, or

• each WeGovNow component needs to include a pre-distributed JavaScript.

5.11 Logout through navigation bar

The common WeGovNow navigation bar (as returned by the “navigation”
endpoint, see subsection 3.1) should also include a possibility to logout. Due to
protection against cross-site-request-forgery (CSRF) and because the navigation
bar will be included in responses from different web servers (different “origins”),
a simple logout link does not work. Subsection 2.12.2 deals with different ap-
proaches to this problem.

24/27

Appendix B: UWUM Work Report



75The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

5.12 Collapsing navigation bar and application menu

In case of mobile devices, it may be desirable to collapse the navigation bar to
a single menu icon displayed in the corner of the screen. Despite the technical
problems in regard to JavaScript (which are discussed in subsection 5.10), there
is also a challenge in regard to a potentially existent second menu bar which is
provided by the particular application currently selected.

It could be difficult for the user if two menu icons are being displayed (i.e. a
meta-menu, which covers the entries of the navigation bar, and an application
specific menu). A potential solution could be to combine both menus into a single
one. In this case, however, the considerations of subsection 5.10 still apply.

5.13 UWUM clients without user interface

In addition to UWUM clients having a user interface, there are also WeGovNow
applications thinkable which do not have any (end-)user interface. This includes
both meta-API providers as well as other service components. In the context of
WeGovNow, one meta-API provider could be OntoMap.

The current UWUM specification enables the development of meta-APIs be-
cause access tokens are not bound to a particular UWUM client and can be
downgraded in regard to their access token scope (of which the latter is impor-
tant for security, see subsection 2.14). Thus, a meta-API can simply require its
callers to provide a valid access token which then can either be used directly or
downgraded for further requests performed by the meta-API provider to other
resource servers.

Nonetheless, the mechanisms described in this work report still require priv-
ileges that are bound to a particular user. For UWUM clients requiring access
privileges that are not tied to a particular user (e.g. clients which aggregate data
of all users and publish that information), the Client Credentials Grant67 should
be implemented.

5.14 Client authentication for resource servers

While UWUM enables (a) its clients to authenticate users and (b) resource servers
to verify user authorization (both explained in section 2), it does not enable
resource servers to authenticate clients. Such client authentication might be
required by applications that want to establish a trusted channel to another
application independently of user authorization.68

67https://tools.ietf.org/html/rfc6749#section-4.4
68An example could be OntoMap logging actions executed at other applications (which are

then reported to OntoMap by the respective application with client authentication enabled).

25/27

Appendix B: UWUM Work Report



The Liquid Democracy Journal76 issue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

Unfortunately, neither OAuth 2.0 nor UWUM enable applications to verify
the identity of another application. Even if OAuth 2.0 uses client authentication
for a variety of reasons69 for the authorization endpoint26, it doesn’t provide such
an authentication method to other applications. Extending the OAuth 2.0 work
flow in this matter (e.g. by returning the client id when an access token is
presented to the validation endpoint70) would rise some issues:

• Tieing an access token (a bearer token2 in case of UWUM) to a particular
client does not make sense in case of applications that behave both as
an OAuth 2.0 resource server and as a client (e.g. meta-API providers
or applications which provide an API and have to perform further API
calls to complete a requested action). Also, client impersonation would
be possible. To give an example: if a received access token is tied to a
particular client A, and if application A uses this access token to perform an
action at application B, then application B would be able to impersonate
application A. Furthermore, application B couldn’t use the access token to
authenticate as application B when performing further requests at the API
of another application C.

• Using a custom scope to identify the origin of a request (e.g. a scope
“I am appX”) would also enable client impersonation (e.g. any applica-
tion who receives an access token with the scope “I am appX” could
then impersonate application X). An alternative could be to use scopes
that reflect better the particular action to be performed, e.g. a scope
“write appXs log at appY”. It is self-evident that this would increase
the number of scopes drastically (possibly quadradically), which, in turn,
might create a maintenance/configuration mess. Other than that, there
is another problem with using scopes for client authentication: following
RFC 6750, there can only be one bearer token per request.2 If a client
needs to use a received access token for an API call at another compo-
nent, then this access token could not be used to authenticate that client
because it won’t have the necessary scope. One possible solution could
be to allow adding scopes to an existing access token or extend RFC 6750
in such a way that multiple access tokens could be used per request. All
those solutions, however, go far beyond OAuth 2.0 and would require extra
implementation work for all consortium partners. In the end, the created
solution wouldn’t be OAuth 2.0 anymore.

69See beginning of subsection 2.4.2 of this report.
70See subsection2.8 for an explanation of the validation endpoint.

26/27

Appendix B: UWUM Work Report



77The Liquid Democracy Journalissue 6

UWUM Work Report LiquidFeedback / FlexiGuided GmbH

The straight-forward way of authenticating clients is to use the existing mech-
anism already employed by all UWUM clients: TLS client-side certificates. This,
however, requires TLS client certificate checking by each resource server that
needs to authenticate other clients.

© 2016 FlexiGuided GmbH, Berlin

27/27

Appendix B: UWUM Work Report

This project has received funding from the European Union's
Horizon 2020 research and innovation programme under
grant agreement No 693514.



The Liquid Democracy Journal78 issue 6



Also published by Interaktive Demokratie e.V.:

The Principles of LiquidFeedback

This book gives an in-depth insight into the philosophical, political and technological aspects of
decision making using the internet and the “secrets” of LiquidFeedback, a computer software
designed to empower organizations to make democratic decisions independent of physical
assemblies, giving every member of the organization an equal opportunity to participate in the
democratic process.

The inventors of LiquidFeedback explain the principles and rules of procedure developed for
LiquidFeedback providing the key features for democratic self-organization. They give a theoretical
background about collective decision making and answers to practical questions. This is a must-read
for anybody planning to make online decisions or to build online decision platforms and is also
interesting for anybody interested in the future of democracy in the digital age.

More than 200 pages, including:

• detailed descriptions of the concepts of Liquid Democracy
• explanation of the structured discussion process in LiquidFeedback, including:

• the collective moderation system
• protection of minorities and the problem of "noisy minorities"
• preferential voting

• reasons for the design principles of LiquidFeedback
• real-world integration into existing democratic systems
• analysis of the verifiability of voting systems
• glossary and an extensive index
• bibliographic references
• more than 20 illustrations

Order at bookstores world wide with the ISBN 978-3-00-044795-2 or at:

http://principles.liquidfeedback.org/




