
Work report on Unified WeGovNow User
Management (UWUM) development

Jan Behrens, Axel Kistner, Andreas Nitsche, Björn Swierczek

2016-12-12

© 2016 FlexiGuided GmbH, Berlin

1 Presentation of UWUM in Berlin

A first draft of UWUM has been presented in the kick-off meeting “Connecting
The Bits” on April 14, 2016 in Berlin. The overall idea was to build a single-
sign-on (SSO) solution on OAuth 2.0’s Authorization Code1 flow.

For access tokens, the use of bearer tokens2 was proposed. Furthermore,
it was agreed on that TLS is to be used to secure all communication between
UWUM and other components.

In addition to single-sign-on, UWUM’s capabilities were planned to include:

• a style endpoint, which allows applications to retrieve style information
(e.g. a color scheme),

• a navigation endpoint, which allows applications to incorporate a common
nagivation bar into their user interfaces, and

• a service discovery endpoint, which allows applications to retrieve a list of
other applications within the system and their capabilities/protocols.

This way, WeGovNow is designed to be a modular system that may be extended
with different services which are all connected through UWUM.

It was agreed that UWUM will be implemented by LiquidFeedback such that
it is possible to use synergetic effects between the necessary creation of an API
for LiquidFeedback and the newly created features required by UWUM.

1See https://tools.ietf.org/html/rfc6749#section-1.3.1 for a short overview on
the Authorization Code flow and https://tools.ietf.org/html/rfc6749#section-4.1

for a detailed description.
2https://tools.ietf.org/html/rfc6750

1/27

https://tools.ietf.org/html/rfc6749#section-1.3.1
https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6750


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2 Authentication and Authorization

For reasons of interoperability and security, we aimed to create an implementation
that is fully compliant with RFC 6749.3 In this section, the extensions necessary
in addition to that document will be explained below. All functionality has been
implemented by the time of publishing this work report except where otherwise
noted.

2.1 Roles

RFC 6749 defines several roles in subsection 1.1.4 The UWUM component as
implemented by LiquidFeedback takes the role of the “authorization server”.
Other WeGovNow components will take the role of “clients” but may also act
as “resource server” for other components.

2.2 Choice of protocol flow

UWUM requires the Authorization Code flow1 for secure user authentication, i.e.
when used for single-sign-on (SSO). (Note that subsection 10.16 in RFC 6749
explains why the Implicit flow5 as defined by OAuth 2.0 is not suitable for secure
user authentication.6)

The Implicit flow5 is still supported for clients which only require authorization
but do not rely on secure user authentication (e.g. pure JavaScript clients which
access other components but do not store themselves any resources which would
need to be protected by SSO).

2.3 Types of clients

RFC 6749 distinguishes between “confidential clients” (which are capable of
secure client authentication, e.g. by maintaining confidentiality of their client
credentials) and “public clients” (which are incapable of secure client authenti-
cation). UWUM requires all clients which use OAuth 2.0’s Authorization Code1

flow (and thus receive long-lasting refresh tokens) to be capable of secure au-
thentication; i.e. every use of the token endpoint (see subsections 2.7 and 2.8)
will require client authentication (except when an access token scope downgrade

3https://tools.ietf.org/html/rfc6749
4https://tools.ietf.org/html/rfc6749#section-1.1
5See https://tools.ietf.org/html/rfc6749#section-1.3.2 for a short overview on

the Implicit flow and https://tools.ietf.org/html/rfc6749#section-4.2 for a detailed
description.

6https://tools.ietf.org/html/rfc6749#section-10.16

2/27

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749#section-1.1
https://tools.ietf.org/html/rfc6749#section-1.3.2
https://tools.ietf.org/html/rfc6749#section-4.2
https://tools.ietf.org/html/rfc6749#section-10.16


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

is performed, see subsection 2.14). The use of “public clients” is only supported
for those clients which utilize the Implicit5 flow because these clients will not
handle any long-lasting tokens.

2.4 Client registration

Client registration is mentioned in section 2 of RFC 6749, even though the
standard explicitly states that “the means through which the client registers with
the authorization server are beyond the scope of [the] specification”.56 UWUM
provides two methods of client registration:

• registering clients through the municipality (or their technical administra-
tion) or an organization running a particular installation of WeGovNow,

• registration of any other (“dynamic”) client on a per-user basis by each user
who wishes to use that client to access WeGovNow (machine accessibility).

These two registration methods are described in the following two subsections
respectively.

2.4.1 Clients approved by the municipality

Clients approved by the municipality authenticate through TLS (X.509) certifi-
cates which are signed by the municipality or a certificate authority acting on
their behalf. For example, the operator of the UWUM server could issue a cer-
tificate to the operator of each respective client. Furthermore, the operator of
the UWUM server configures a list of automatically granted access scopes7 for
the particular client (not every client has the same automatically granted access
scopes, e.g. some clients might not require voting rights). Any other access scope
may be granted on a per-user basis by the respective end-user or be disallowed
by the municipality for a particular client (through white or black lists).

This results in the following information being stored per client:

• name of client,

• OAuth 2.0 client identifier (client id),

• redirect URI(s)8,

• common name (CN) of the TLS certificate,

7https://tools.ietf.org/html/rfc6749#section-3.3
8See https://tools.ietf.org/html/rfc6749#section-3.1.2 for redirection URIs.

One redirect URI is the default redirect URI, other redirect URIs may be selected through the
redirect uri parameter, see: https://tools.ietf.org/html/rfc6749#section-4.1.1

3/27

https://tools.ietf.org/html/rfc6749#section-3.3
https://tools.ietf.org/html/rfc6749#section-3.1.2
https://tools.ietf.org/html/rfc6749#section-4.1.1


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

• automatically granted scopes7,

• white list of scopes (optional),

• black list of scopes (optional, i.e. may be empty).

2.4.2 Dynamic clients

For the sake of machine accessibility, it would be nice to allow unregistered
clients. Unfortunately, OAuth 2.0 requires some sort of client registration (at
least) for the following security reasons:

• allowing capability to authenticate a client,9 in order

– to avoid refresh token abuse by a third party in case of accidentially
exposed refresh tokens,10

– to avoid authorization code abuse (which could expose access and re-
fresh tokens to a malicious 3rd party) in case of exposed authorization
codes,11

• restriction of choice of the redirect URI12, in order

– to avoid redirection URI manipulation,13

– to avoid open redirector attacks.14

In order to be able to provide an open platform, however, it should still be
possible to use clients which have not been explicitly approved by the operator
of the WeGovNow platform. Assuming there will be more than one WeGovNow
installation (e.g. run by different municipalities, each operating their own system),
this is necessary in order to enable third parties to provide generic clients that
can be used by any WeGovNow platform, even those not known to the operator
of the client.

Consequently, registration of these clients should happen dynamically without
further human interaction.15 This requires to automatically establish a channel

9See https://tools.ietf.org/html/rfc6749#section-2.3 and https://tools.

ietf.org/html/rfc6749#section-10.1
10https://tools.ietf.org/html/rfc6749#section-10.4
11https://tools.ietf.org/html/rfc6749#section-10.5
12https://tools.ietf.org/html/rfc6749#section-3.1.2
13https://tools.ietf.org/html/rfc6749#section-10.6
14https://tools.ietf.org/html/rfc6749#section-10.15
15We assume that every user of WeGovNow is legally entitled to use any client of his or her

choice to access his or her data and to perform actions. In cases where a particular operator
of LiquidFeedback (e.g. a municipality) wants to decline this right, the use of dynamic clients
could be disabled.

4/27

https://tools.ietf.org/html/rfc6749#section-2.3
https://tools.ietf.org/html/rfc6749#section-10.1
https://tools.ietf.org/html/rfc6749#section-10.1
https://tools.ietf.org/html/rfc6749#section-10.4
https://tools.ietf.org/html/rfc6749#section-10.5
https://tools.ietf.org/html/rfc6749#section-3.1.2
https://tools.ietf.org/html/rfc6749#section-10.6
https://tools.ietf.org/html/rfc6749#section-10.15


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

of trust between the client and the UWUM server through secure authentication.
UWUM relies on the following mechanism to archive secure authentication of a
dynamic client:

• a dynamic client is only referenced by its domain, and

• at the choice of each client, registration is performed either

– by adding a certain entry to the domain’s DNS zone16 or

– temporarily through a REST API call to the UWUM server with a
client-side TLS (X.509) certificate issued to the respective domain
and signed by a publicly trusted certificate authority (e.g. “Let’s En-
crypt”)17.

Taking into account that it cannot be outruled that TLS certificates could
accidentially be exposed to a malicious 3rd party and considering that there might
be at least one publicly trusted CA which is vulnerable to a state-level attack,18

we restrict the redirection URI12 to the following static path on the web server’s
root level:

/liquidfeedback client redirection endpoint

This repels any attempts of “authorization code redirection URI manipulation”
as explaiend in subsection 10.6 of section 10 (“Security considerations”) of
RFC 6749 (“The OAuth 2.0 Authorization Framework”)13 even in cases where
dynamic client registration could be forged.

Any client that cannot follow the above redirection URI convention must be
registered by the municipality or organization running a particular installation of
WeGovNow (see subsection 2.4.1).

As an additional security mechanism, the dynamic registration is always done
for a set of access token scopes7 to be used with a particular OAuth 2.0 flow.
Thus a client’s redirection endpoint registered for the Authorization Code flow
cannot be used by the Implicit flow or vice versa unless the registration is broad-
ened accordingly.

16A TXT DNS resource record needs to be added to the subdomain
“ liquidfeedback client” of the respective domain which must include a so-called
magic string (namely “dynamic client v1”) as first entry.

17The operator of LiquidFeedback is therefore required to decide on a list of trusted CA’s.
Many operating systems already ship with such a list of root certificates.

18Note that similar security considerations also apply to DNS and the risk of DNS cache
poisoning or similar attack vectors. This could, however, be fixed by DNSSEC such that future
versions of UWUM might lift the described restrictions for domains which are cryptographically
secured.

5/27



UWUM Work Report LiquidFeedback / FlexiGuided GmbH

The operator (e.g. a municipality) may still decide to disallow the use of
non-approved (dynamic) clients completely. This would, however, limit machine
accessibility and render the platform less open for extensions and unforseen use
cases. An appropriate configuration option will be provided which can also be
used to limit the access token scope of dynamic clients (using a white or black
list).

Unless dynamic clients are entirely disabled, an additional security warning
will be displayed to the user when authorizing such a client. The user will be
requested to verify that:

• the client domain is trustworthy,

• the client domain is used to host a legit application to access LiquidFeed-
back,

• the spelling of the domain name (whose client is going to be authorized)
is correct,

• the granted scope of access (access token scope) is intended by the user.

Clients which want to avoid these warnings must be approved by the munici-
pality or organization that is operating the LiquidFeedback system (see subsec-
tion 2.4.1).

2.5 Access token types

As previously mentioned, bearer tokens2 as defined in RFC 6750 will be used as
access tokens. Therefore, the access token type (“token type”)19 returned by
UWUM is always set to “bearer”.

2.6 Access token scopes

The following set of generic20 access token scopes7 has been specified:

authentication: Authenticate the current user by reading its unique static ID
and current screen name.

19https://tools.ietf.org/html/rfc6749#section-7.1
20Application specific scopes could be introduced if they turn out to be necessary in the

future. It would also be thinkable for dynamic clients acting as a resource server to provide a
set of application specific scopes as part of their registration. Further security analysis would
be required for such an extension. See also subsection 5.8 for considerations on generic versus
application specific scopes.

6/27

https://tools.ietf.org/html/rfc6749#section-7.1


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

identification: Identify the current user by reading its unique identification
string. Automatically implies scope “authentication”.

notify email: Read the notification e-mail address of the current user.

read contents: Read any user generated content (without authorship, ratings
and votes).

read authors: Read the author names of user generated content (author’s
static ID and screen name).

read ratings: Read ratings (see scope “rate” below) by other users.

read identities: Read the identities (identification strings) of other users.

read profiles: Read the profiles of other users (e.g. phone number, self-
description, etc).

post: Post new content.

rate: Rate user generated content (e.g. thumbs up/down, “+1”, support an
initiative, rate a suggestion).

vote: Finally vote for/against user generated content in a decision (e.g. vote on
an issue in LiquidFeedback)

profile: Read profile data of current user (e.g. phone number, self-description,
etc).

settings: Read current user’s settings (e.g. notification settings, display con-
trast, etc).

update name: Modify user’s screen name.

update notify email: Modify user’s notification e-mail address.

update profile: Modify profile data (e.g. phone number, self-description, etc).

update settings: Modify user settings (e.g. notification settings, display con-
trast, etc).

Note that any of these scopes can also be suffixed with “ detached” to request
the scope for usage also when the user is not logged in (which will be explained
in subsection 2.9).

7/27



UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.7 User authentication (single-sign-on)

OAuth 2.0 by itself is not suitable for user authentication. Both the Authorization
Code flow1 and the Implicit flow5 can be extended to provice user authentica-
tion and thus allow to implement a single-sign-on (SSO) system. Because the
Implicit flow would require additional security mechanisms to be implemented at
client side (where bad implementations result in security vulnerabilities),6 UWUM
extends the Authorization Code flow for the purpose of implementing an SSO
solution as described in the following.

In order to protect against authorization code substitution attacks, the UWUM
server checks the OAuth 2.0 client identity before accepting an authorization
code.21 This is both a requirement stated in subsection 4.1.3 of RFC 6749
(“The OAuth 2.0 Authorization Framework”)22 and a recommended counter-
measure to avoid authorization code substitution attacks in subsection 4.4.1.13
of RFC 6819 (“OAuth 2.0 Threat Model and Security Considerations”)23.

The Access Token Response24 of the OAuth 2.0 Authorization Code flow
gets extended with the field “member id” which returns the LiquidFeedback
member ID of the signed-in user. OAuth 2.0 clients not aware of this extension
are requested to ignore this field as stated in subsection 5.1 of RFC 6749.25

Nonetheless, these clients may still pass the returned access token to the validate
endpoint (see next section) in order to determine the member id of the user who
has logged in.

2.8 Endpoints

RFC 6749 defines two endpoint URIs at the authorization server side: the “autho-
rization endpoint”26 and the “token endpoint”27. These are defined as follows:

• https://server name/api/1/authorization (GET)

• https://server name/api/1/token (POST)28

Note that a base path may be appended to the server name component if appli-
cable.

21Note that, if the client is authenticating with the UWUM server, the client id parameter
can be ommitted by the client when accessing the token endpoint (see next footnote).

22https://tools.ietf.org/html/rfc6749#section-4.1.3
23https://tools.ietf.org/html/rfc6819#section-4.4.1.13
24https://tools.ietf.org/html/rfc6749#section-4.1.4
25https://tools.ietf.org/html/rfc6749#section-5.1
26https://tools.ietf.org/html/rfc6749#section-3.1
27https://tools.ietf.org/html/rfc6749#section-3.2
28The server name for the token endpoint may differ for those requests where TLS client

certificates are used. See subsection 5.2 for explanation.

8/27

https://tools.ietf.org/html/rfc6749#section-4.1.3
https://tools.ietf.org/html/rfc6819#section-4.4.1.13
https://tools.ietf.org/html/rfc6749#section-4.1.4
https://tools.ietf.org/html/rfc6749#section-5.1
https://tools.ietf.org/html/rfc6749#section-3.1
https://tools.ietf.org/html/rfc6749#section-3.2


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

RFC 6749 does not specify any method for a resource server to “ensure that
an access token presented to it by a given client was issued to that client by the
authorization server”.29 Therefore, an additional validation endpoint has to be
specified:

• https://server name/api/1/validate (POST)

The validation endpoint does not require any parameters except the access token
(bearer token) to be passed using the mechanisms described in section 2 of
RFC 6750.30 It returns a JSON object with the following fields:

– scope: a space separated list of scopes7 associated with the access token
(with any “ detached” suffix stripped off, see next subsection 2.9),

– member id: an integer set to the id of the user who logged in,

– logged in: a boolean set to false if the user has meanwhile logged out.

Note that the scope of an access token may change when the user logs out. This
is explained in the following subsection 2.9. Subsection 2.12 will pick up the
issue of user logout again.

There may be situations where an OAuth 2.0 client wants to check whether
a user is currently logged in without actually forcing the user’s web browser
to perform a login if no user was logged in. To provide this functionality, a
4th endpoint (also out of scope of the OAuth 2.0 specification) is added at the
authorization server side:

• https://server name/api/1/session (POST)

This “session” endpoint can be accessed directly by a user’s web browser (through
a script performing a CORS31 HTTP request with credentials). Its usage is
further explained in subsection 2.10.

2.9 Binding lifetime of access and refresh tokens to a users
web session by default

Access tokens have an expiry time after which they will be invalidated.32 In
addition to the maximum access token lifetime returned in the Access Token
Response,24 UWUM additionally limits the lifetime of both access tokens and

29See section 10.3 of the RFC: https://tools.ietf.org/html/rfc6749#section-10.3
30https://tools.ietf.org/html/rfc6750#section-2
31Cross-origin resource sharing, see https://www.w3.org/TR/cors/
32https://tools.ietf.org/html/rfc6749#section-5.1

9/27

https://tools.ietf.org/html/rfc6749#section-10.3
https://tools.ietf.org/html/rfc6750#section-2
https://www.w3.org/TR/cors/
https://tools.ietf.org/html/rfc6749#section-5.1


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

refresh tokens to the user’s web session at the LiquidFeedback (UWUM) server
by default (i.e. if the user logs out, the access tokens and refresh tokens will be
immediately invalidated).

Some clients, however, require access longer than the user’s login session. For
this purpose, access token scopes7 with the suffix “ detached” may be requested
(e.g. “vote detached” instead of “vote”). Whether an application may request
these scopes (as well as which scopes may be requested for detached access)
depends on the configuration for the particular client, or – in case of dynamic
clients – on the configuration for all dynamic clients. An access or refresh token
that contains only detached scopes will not be invalidated on user logout. Access
tokens, however, will still be invalidated when their expiry time (as denoted by the
“expires in” field in the Access Token Response24) has elapsed, in which case
a refresh token must be used to obtain a new access token. Access and refresh
tokens which contain both detached and non-detached scopes will only have
their non-detached scopes removed on user logout instead of being invalidated
completely.

Other than the behavior described above, the “ detached” scopes behave as
any other scope for the authorization26 and token27 endpoint. Only the validation
endpoint (“api/1/validate”) will strip the suffix “ detached” from the scope
field in its response because it doesn’t matter for a validating resource server
whether a scope has been granted detached from a web session or not.33

Even if the token lifetime is bound to the web session (i.e. when only non-
detached scopes are requested), a user’s logged in web browser may still auto-
matically re-authorize the client whenever he or she is logged in at UWUM and
visits the client’s website. If such a client was authorized by the user, the per-
mission can be revoked by the user at any time using a designated configuration
dialog provided by the UWUM server.

2.10 Checking user login without triggering a login

An interactive UWUM client application may want to determine whether a user
is logged in without actually triggering a login. OAuth 2.0 does not provide such
a mechnaism on its own.34 UWUM therefore provides an additional “session”
endpoint (https://server name/api/1/session, see subsection 2.8) to allow

33Neither RFC 6749 nor RFC 6750 are violated because the authorization and token endpoint
treat detached scopes like any other scope and a validation endpoint is not covered by these
RFCs.

34Also, extending the authorization endpoint by accepting a “prompt” parameter as done by
OpenID Connect is not feasible for user-registered clients because non-logged-in users could
be redirected to malicious clients registered by other users, making the system susceptible to
open redirector phishing attacks. See subsection 5.5

10/27



UWUM Work Report LiquidFeedback / FlexiGuided GmbH

web applications to gather information about the current login status of a user
without actually triggering any (interactive) login or permission grant procedure.
This endpoint is directly accessed by the user’s web browser through an XML-
HttpRequest (XHR) call while setting the “withCredentials” option of the
XMLHttpRequest object to true.

The call does not need any parameters and should not have any additional
request headers set35. It returns a JSON object with the “member id” attribute
set to the ID of the current user (or to null if there is no logged-in user or
if a user-registered client is not authorized to obtain the login status). Since
the request is done by the user’s web browser, the answer is not authoritative
for the UWUM client and must only be used as a hint. A returned user ID
MUST still be confirmed via the regular OAuth 2.0 procedure using the
authorization endpoint! In this case, the authorization endpoint will not show
a login window (because the user is already logged in).36

2.11 Caching the login state

A successful user authentication could be cached in the session store of the
UWUM client (usually at the web server side in conjunction with a cookie).
This, however, can create confusion for the user because he or she might show
up as being logged into the system after having logged out or vice versa. A
possible solution is to use the “session” endpoint as discussed in the previous
subsection 2.10 through a JavaScript which then notifies the server side of the
UWUM client by redirecting the web browser if a reconfirmation of the user’s
login status is necessary.

In either case, UWUM clients should reconfirm that the user has not logged
out at least immediately before any state changing request (e.g. posting, rating,
voting, etc.) by using the validation endpoint (see subsection 2.8). This check
cannot be done directy by the web browser due to security reasons (as also
explained in the previous subsection 2.10).

35Not setting additional request headers avoids CORS pre-flight requests, see https://www.
w3.org/TR/2014/REC-cors-20140116/#cross-origin-request-with-preflight-0

36There is a chance for a race-condition if the user simultaneously logs out. This could be
solved by returning an authorization code through a CORS call. However, implementation of
such a protocol is out of scope for WeGovNow and would require further security analysis.

11/27

https://www.w3.org/TR/2014/REC-cors-20140116/#cross-origin-request-with-preflight-0
https://www.w3.org/TR/2014/REC-cors-20140116/#cross-origin-request-with-preflight-0


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.12 Logout

2.12.1 Checking for logout

As explained in subsection 2.9, an access or refresh token is automatically inval-
idated on logout if only non-detached scopes have been requested. For all other
cases, the “logged in” boolean field returned by the validation endpoint (see
subsection 2.8) may be used to detect a logout by the user.

The “session” endpoint (as further explained in subsection 2.10) may also
be used to check whether a user might have logged out (without consuming
much resources on the server-side of the UWUM client).37 Note, however, that
a request from the web browser to the session endpoint is not suitable for the
UWUM client application to validate that a user is really logged in or to securely
confirm that his or her session has really ended (see subsection 2.10).

2.12.2 Performing logout

Depending on design criteria, logout could be performed either

• through a direct link in the UWUM navigation bar or

• through a link in the UWUM navigation bar which leads to a user page
where there is a second link for the actual logout procedure.

Technical implementation requirements differ for these two cases. In the first
case, the logout is performed in the context of any UWUM client; while in the
second case, the final logout link or button can be displayed in the context of
a web page returned by the UWUM server (which is a different origin). Due to
protection against cross-site-request-forgery (CSRF), an appropriate access token
or dedicated logout token would need to be part of the link in the first case (the
case of using a direct link for logout). In this case, an appropriate OAuth 2.0
access token scope would need to be added to avoid unwanted exposure of the
logout token (or an access token with respective scope).

A decision on this issue has not been taken yet; user interface design con-
siderations and technical security considerations should determine which of the
discussed two approaches is more suitable. Also refer to subsection 5.10, which
discusses certain design limitations due to privilege separation.

37A future extension of UWUM could also allow UWUM clients (or their JavaScript compo-
nents at the web browser side) to issue a request which is held open by the UWUM server for
a set amount of time in order to allow pushing a change of the user’s login status just-in-time
(see also subsection 5.4).

12/27



UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.13 Requesting several access token scopes at once

To avoid unnecessary delays, a client may (as an extension to RFC 6749) request
several access token scopes7 (i.e. sets of access ranges) at once by using the
parameters “scope1”, “scope2”, etc. in the Authorization Request. The corre-
sponding result parameter “access token” will have “1”, “2”, etc. appended
to its name (e.g. “access token1” etc.). Note that counting must start with “1”.
It is, however, allowed to include an optional non-numbered “scope” parameter
in addition to “scope1”, “scope2”, etc. The result parameters “token type”
and “expires in” are never numbered or duplicated due to size limitations in
the Implicit flow (maximum URL length) but always relate to all returned access
tokens.

The described behavior of this subsection is not part of OAuth 2.0. Using
this extension is entirely optional for the client.

2.14 Downgrading access token scopes

As an extension to RFC 6749, the token endpoint has been extended in such
a way that it can be used to downgrade access token scopes. This feature is
important for meta-APIs because according to RFC 6749, the only way to obtain
a new access token without the user’s web browser is to provide a refresh token to
the token endpoint.38 Refresh tokens, however, are bound to a particular client
and must not be shared by the client with any other party but the authorization
server.39

A meta-API might receive an access token with a broader scope7 than the
scope necessary for calls made by the meta-API provider to another resource
server. Using a greater scope than necessary for calls to resource servers, however,
weakens the overall security of the system. In order to allow meta-API providers
to downgrade the scope prior to using the access token, the token endpoint27

accepts the string “access token” as value for the “grant type” parameter,
which will tell the UWUM server that an access token (and not an authorization
code or refresh token) is being presented to receive a new access token with a
downgraded scope. The access token has to be provided according to the rules
stated in section 2 of RFC 6750,30 and one or more scopes must be requested
through the “scope”, “scope1”, etc. parameters (see subsection 2.13 for details
on requesting several scopes at once). Client authentication is not required. The
old access token with the broader scope will not be invalidated and may still
be used in future requests (e.g. to receive another access token with a different
scope).

38https://tools.ietf.org/html/rfc6749#section-6
39https://tools.ietf.org/html/rfc6749#section-10.4

13/27

https://tools.ietf.org/html/rfc6749#section-6
https://tools.ietf.org/html/rfc6749#section-10.4


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

For security reasons, downgrading an access token scope will never extend
the token lifetime, i.e. the returned access token will have the same remaining
maximum lifetime than the access token presented to the token endpoint.40

2.15 Additional measures to prevent refresh token abuse

Conforming with section 10.4 of RFC 6749,41 the UWUM server (LiquidFeed-
back) ensures that refresh tokens are bound to the client they have been issued
to. As also suggested in subsection 10.4 of RFC 6749, further means to restrict
refresh token abuse are implemented. Refresh tokens are replaced periodically
and using a refresh token invalidates the corresponding scope7 of all other previ-
ously issued refresh tokens, with the exception that refresh tokens which are still
bound to a logged in user are unaffected.42 An additional grace period avoids
problems due to race conditions or aborted connections. This approach is sim-
ilar to the example given in subsection 10.4 of RFC 6749 while being resistant
against accidental race-conditions or connection aborts and allowing for a more
flexible usage (e.g. different subsystems of the same client may store different
refresh tokens indepenently).

2.16 Required CORS support for resource servers

Because RFC 6750 requires bearer tokens2 to be accepted through the HTTP
header “Authorization”,43 and because the “Authorization” header is not in
the list of “simple response headers” as defined by the W3C recommendation on
cross-origin resource sharing,44 it is inevitable for all resource servers to support
cross-origin resource sharing (CORS) with the respective “Access-Control-
Allow-Headers” option45 set to be able to fulfill the requirements of RFC 6750.
Every UWUM component acting as a resource server should therefore enable and
configure CORS accordingly. See https://www.w3.org/TR/cors/ for details.

40This is the reason why client authentication would not grant any extra security here and
thusly can be omitted.

41https://tools.ietf.org/html/rfc6749#section-10.4
42This is implemented by downgrading “ detached” scopes to their corresponding non-

detached scopes.
43https://tools.ietf.org/html/rfc6750#section-2.1
44https://www.w3.org/TR/cors/#terminology
45https://www.w3.org/TR/cors/#access-control-allow-headers-response-header

14/27

https://www.w3.org/TR/cors/
https://tools.ietf.org/html/rfc6749#section-10.4
https://tools.ietf.org/html/rfc6750#section-2.1
https://www.w3.org/TR/cors/#terminology
https://www.w3.org/TR/cors/#access-control-allow-headers-response-header


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

2.17 HSTS

We recommend to use HTTP Strict Transport Security (HSTS)46 for all WeGov-
Now components to increase security.

3 Additional endpoints for integration

Beyond user authentication and authorization, three more API endpoints are
being defined for backend and UI integration:

• a “navigation” endpoint to incorporate a navigation bar,

• a “style” endpoint to retrieve style information, and

• a “client” endpoint for applicaton and service discovery.

Prototypes for the navigation and style endpoint have been implemented; the
client endpoint for application and service discovery is currently only a stub.

3.1 Navigation endpoint

In order to integrate all WeGovNow applications in such a way that they look
and feel like a single application, all WeGovNow applications share a common
navigation bar. The “navigation” endpoint of the UWUM server returns this
navigation bar to be included by each WeGovNow application. This way, modi-
fications to the navigation bar can made at a central place without the need to
change every single application.

Either a login button or the user name with a link to a user page (where
logout is possible) is included in the navigation bar, depending on whether an
access token is provided when calling the endpoint.47 For the login button, an
alternative URL may be provided by the caller of the navigation endpoint. This
login URL may either be the authorization endpoint of the UWUM server with
an appropriate “state” HTTP GET parameter included (note that the value
must be percent-encoded48) or an URL provided by the UWUM client which
initiates the OAuth 2.0 authorization and authentication procedure as described
in section 2 of this document. Alternatively a unique placeholder (e.g. a GUID)

46https://tools.ietf.org/html/rfc6797
47Also a dynamic popup menu is thinkable. However, issues with JavaScript and privi-

lege separation in case of animated submenus according to Material Design require further
consideration. Refer to subsection 5.10 in that matter.

48https://tools.ietf.org/html/rfc3986#section-2.1

15/27

https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc3986#section-2.1


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

can be passed as login URL to allow caching of the rendered navigation bar and
replacing the login URL locally at the UWUM client.49

Whether a structured JSON document or a pre-rendered HTML snippet is
returned can be selected by another parameter passed to the navigation endpoint.
A pre-rendered HTML snipped may be either returned encapsulated in a JSON
response or raw for usage with the HTML5 include tag.

When the “client id” parameter is provided to the navigation endpoint,
the corresponding client tab gets highlighted (or marked as active in case of the
structured JSON document response).

It is planned to collapse the navigation bar on small screens. This feature
might interfere with application specific menus; refer to subsection 5.12 for that
matter.

3.2 Style endpoint

The style endpoint provides basic color definitions for a primary and an accent
color as 8-bit RGB triplet to be able to customize the unified visual look of
all WeGovNow applications for a particular installation by central configuration.
Additional colors can be derived from these two base colors. If the UWUM
server gets configured with colors from the Material Design color palette, the
corresponding Material Design color name of the primary and the accent color is
also provided.

3.3 Endpoint for application and service discovery

The endpoint “client” is supposed to return a list of all system applications
and, if an access token is provided, a list of all registered dynamic clients for the
corresponding user. Implementation of this endpoint will require storing the base
URL of all system applications at the UWUM server.

Further discussion with OntoMap is required for specification and implemen-
tation of this endpoint.

4 Test platform

A test platform has been created in mid September to start integration with the
other consortium partners.

49Note that the characters “<”, “>”, “&”, as well as the quotation mark character should be
avoided in a placeholder string because these characters would get HTML entity encoded as
described in subsection 8.1.4 of the HTML5 standard, see: https://www.w3.org/TR/html5/
syntax.html#character-references

16/27

https://www.w3.org/TR/html5/syntax.html#character-references
https://www.w3.org/TR/html5/syntax.html#character-references


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

4.1 Benchmarks

The following benchmarks for integration have been defined, whose fulfillments
have been published in the weekly status reports.

Client URLs established A client application (resource server and/or relying
party) has been installed and its base URL and redirection endpoint50 has
been communicated to the consortium.

SSL key and certificate for end-users A private key and a publicly trusted
SSL certificate has been created for the end-user web interface and SSL
connections to that interface have been successfully tested.

Certificate signing request (CSR) for UWUM API A private key for ac-
cessing the UWUM API and a corresponding certificate signing request
(CSR) has been created and submitted to FlexiGuided GmbH (LiquidFeed-
back).

SSL certificate for UWUM API A signed certificate for the UWUM API client
key has been sent back to the consortium member and their client appli-
cation has successfully established a secured connection with the UWUM
server.

Authorization endpoint accessed The client application can redirect an end-
user to the UWUM authorization endpoint.51

Authorization endpoint error response handling The client application is ca-
pable of receiving authorization errors52 through its redirection endpoint50

and displaying it to the end-user.

Access token request (including end-user identification) The client appli-
cation has successfully received an authorization code and identified the
end-user through an access token request.53

Access token request error handling The client application is capable of prop-
erly processing errors during the access token request.54

Using access tokens for API calls to other components The client appli-
cation has successfully used an access token to perform a LiquidFeedback
API call.

50https://tools.ietf.org/html/rfc6749#section-3.1.2
51https://tools.ietf.org/html/rfc6749#section-4.1.1
52https://tools.ietf.org/html/rfc6749#section-4.1.2.1
53https://tools.ietf.org/html/rfc6749#section-4.1.3
54https://tools.ietf.org/html/rfc6749#section-5.2

17/27

https://tools.ietf.org/html/rfc6749#section-3.1.2
https://tools.ietf.org/html/rfc6749#section-4.1.1
https://tools.ietf.org/html/rfc6749#section-4.1.2.1
https://tools.ietf.org/html/rfc6749#section-4.1.3
https://tools.ietf.org/html/rfc6749#section-5.2


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

Access token verification The client application is capable of verifying the
validity and scope of an access token.

Accepting access tokens from other components The client application pro-
vides at least one API call where an access token is used for authorization.

Accepting access tokens as “Authorization” header In conformance with
RFC 6750 (Bearer Token Usage), the client application (resource server)
accepts access tokens through the authorization request header field.55

Cross-origin resource sharing The client application allows cross-origin re-
source sharing (CORS) as described in subsection 2.16 of this document.

Cross-application navigation The UWUM navigation bar has been success-
fully integrated into the client application.

IPv6 IPv6 capabilities have been tested.

5 Technical challenges

In this section, we will describe obstacles encountered during implementation and
during integration with the consortium partners as well as respective solutions.

5.1 Third party clients (non-registered clients vs. dynamic
registration)

OAuth 2.0 demands client registration but does not specify how such client
registration is to be implemented.

“Before initiating the protocol, the client registers with the autho-
rization server. The means through which the client registers with
the authorization server are beyond the scope of this specification
but typically involve end-user interaction with an HTML registration
form.”56

Manual client registration, however, is only suitable for a service-centered
approach where a software provides only a single service (e.g. Facebook, Google,
Twitter, etc). An open source solution, however, could be installed at several
sites by different service providers. It is therefore not sufficient to register a client

55https://tools.ietf.org/html/rfc6750#section-2.1
56Ed. D. Hardt: The OAuth 2.0 Authorization Framework, October 2012. Section 2 (Client

Registration), https://tools.ietf.org/html/rfc6749#section-2

18/27

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750#section-2.1
https://tools.ietf.org/html/rfc6749#section-2


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

at a single service provider if this client shall be usable for any service provider
using the UWUM server software.

One possible solution would be the creation of a central (i.e. world-wide)
UWUM client registry. Such central client registry, however, could be a single
point of failure and would empower a central authority to control usage of the
UWUM protocol (e.g. it would be possible to block certain clients). We consider
this approach contrary to the concepts of open source and open data.

Therefore, we implemented a dynamic client registration protocol that keeps
implementational complexity at a minimum while providing good security prop-
erties which outperforms many other solutions for client registration due to re-
quiring direct access to the DNS zone of the domain (for adding a TXT record)
or credentials (a publicly trusted TLS certificate with corresponding key) that
should be accessible only by the domain owner. Dynamic client registration is
described in subsection 2.4.2 of this document.

5.2 TLS client side certificates and web browser behavior

Web server software often offers three different settings for handling TLS client
certificates:

• client-side certificates disabled,

• optional client-side certificate,

• mandatory client-side certificate.

Often these settings can be made only on a per-domain basis (i.e. for each virtual
host). Furthermore, enabling client-side certificates (even if set to “optional”)
will cause web browsers to show up a dialoge when accessing pages on that
domain.

For these reasons, a separate hostname has to be used for API endpoints
when a TLS client-side certificate is to be provided (which affects the token end-
point27). The UWUM server will have to provide a configuration endpoint where
dynamic clients may retrieve a deviant domain for the token endpoint; and dy-
namic UWUM clients (see subsection 2.4.2) will have to query this configuration
endpoint prior to using the token endpoint).

5.3 Multi-domain certificates

TLS certificates may be issued for more than one domain using the “Subject
Alternative Name” (SAN) extension. The current implementation of Liquid-
Feedback, however, relies on an HTTP reverse proxy to include the distinguished

19/27



UWUM Work Report LiquidFeedback / FlexiGuided GmbH

name (DN)57 of the certificate in a designated HTTP header. Some reverse proxy
software, namely “NGINX” which is recommended for use with LiquidFeedback,
does not properly support transmitting a domain list from the SAN extension. In
case of “NGINX”, header line folding58 is used to pass multiple domain names
from a TLS certificate to the respective backend (e.g. LiquidFeedback). Header
line folding, however, has recently been deprecated by RFC 7230,59 and it is not
supported by LiquidFeedback (and not even by “NGINX” for incoming requests).
The problem of header line folding in the context of multi-domain TLS certifi-
cates has also been discussed in the “NGINX” issue tracker under ticket #857.60

The issue is currently not classified as bug61 and it is unclear when a patch will
be incorporated into the software.

For the technical difficulties explained above, we refrained from supporting
multi-domain certificates at this stage. In case of UWUM clients approved by the
municipality or operator of LiquidFeedback, this shouldn’t be a problem anyway
because the certificate authority will be under the control of the operator, such
that it is easy to create a certificate using the DN/CN property. For dynamically
registered clients, an alternative mechanism using DNS TXT records is available
(see subsection 2.4.2).

If multi-domain certificates are supported in the future, it is vital that the
token endpoint requires the “client id” parameter to be set for all clients au-
thenticating with such a multi-domain certificate. This way, code substitution
attacks23 can be repelled. (Note that RFC 6749 requires the “client id” pa-
rameter to be set only if the client is not authenticating with the authorization
server;22 but this does not work for multi-domain certificates.)

5.4 Outdated logins

While a successful OAuth 2.0 authorization procedure (using the Authorization
Code flow1) can be used to confirm that a user is logged in at the particular time
of the Access Token Response24, an UWUM client obviously can’t assume that
the login will be still valid at any later time.

UWUM currently provides two methods to check if a user has logged out;
these are explained in subsection 2.12.1 of this work report. Considerations in re-
gard to purposeful caching of the user’s login status are found in subsection 2.11.

Even if no caching of the login status is performed, there is still the possibility
that a user opens WeGovNow with two different browser windows or browser tabs.

57The DN contains a single domain as CN (common name).
58https://tools.ietf.org/html/rfc2616#section-2.2
59https://tools.ietf.org/html/rfc7230#appendix-A.2
60https://trac.nginx.org/nginx/ticket/857
61https://trac.nginx.org/nginx/ticket/857#comment:2

20/27

https://tools.ietf.org/html/rfc2616#section-2.2
https://tools.ietf.org/html/rfc7230#appendix-A.2
https://trac.nginx.org/nginx/ticket/857
https://trac.nginx.org/nginx/ticket/857#comment:2


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

He or she might then log out in one window and afterwards switch to the other
window where the logout has not been noticed yet, which creates confusion for
the user. A possible solution is to regularly check if the user has logged out by
utilizing the cross-origin-resource-sharing (CORS) XML-HttpRequest (XHR) as
explained in subsection 2.10.

Regular requests to detect logouts, however, cause unnecessary resource con-
sumption for all involved components. A better approach would be to have a
permanent TCP connection between the web browser and the UWUM server (or
alternatively between the UWUM client and the UWUM server if at the same
time there is a permanent connection between the web browser and the UWUM
client). There are different technologies thinkable for this approach. One method
is to keep an XML-HttpRequest open for a set amount of time during which the
server is capable of sending a message directly to the web browser. (The request
has to be repeated after timeout or after a message has been received, whichever
happens first.) Another technique would be to use WebSockets. None of these
additional techniques have been implemented yet.

5.5 Susceptibility to open redirector phishing attacks when
allowing login checks through web browser redirection

Subsection 2.10 mentioned that an interactive UWUM client application may
want to determine whether a user is logged in without actually triggering a login.
OAuth 2.0 does not provide such a mechnaism on its own, and our research
concluded that any form of redirection-based mechanism for providing this func-
tionality62 would be susceptible to open redirector phishing attacks as described
in subsection 4.2.4 of RFC 6819 (“OAuth 2.0 Threat Model and Security Consid-
erations”)63 as long as third parties are capable of registering a malicious client
with a corresponding redirection URI12 that is under the control of the third
party.

The previously mentioned subsection of the threat model and security con-
siderations document (RFC 6819) suggests client registration with redirect URI
registration (and avoiding redirects to any non-registered redirect URI)64 as only
countermeasure for this threat. However, this countermeasure only works when
manual client registration (and manual approval through the operator of the
UWUM server) is mandatory. It particularly fails if dynamic client registration
(e.g. as described in subsections 2.4.2 and 5.1 of this work report) is allowed.

62e.g. accepting a “prompt” parameter as done by OpenID Connect, see http://openid.

net/specs/openid-connect-core-1_0.html#AuthRequest
63https://tools.ietf.org/html/rfc6819#section-4.2.4
64https://tools.ietf.org/html/rfc6819#section-5.2.3.5

21/27

http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
https://tools.ietf.org/html/rfc6819#section-4.2.4
https://tools.ietf.org/html/rfc6819#section-5.2.3.5


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

Luckily, the technique of cross-origin resource sharing (CORS) allowed for the
development of an alternative to the redirect-based approach. Subsection 2.10
explains the mechanism.

5.6 Handling of updated user related data (e.g. user’s e-
mail addresses)

When a WeGovNow application wants to send notification e-mails to users, it
is not adequate to retrieve the e-mail address only once from UWUM as the
notification e-mail can be changed by the user at any time. Such a change
needs to be reflected by all applications using this e-mail address. Therefore
an application needs to retrieve the current notification e-mail address directly
before using it, in fact again before every usage.

For that purpose, another API endpoint /api/1/notify email (GET) can
be used (using an access token with the “notify email” scope). To be able
to retrieve the e-mail address while the user is not currently logged in, it will be
necessary to request the “notify email detached” scope when identifying the
user and to store the received refresh token permanently. The suffix “ detached”
requests a scope for detached usage, i.e. for usage even after the user logs out.65

Similar situations can occur related to other member properties stored in one
application but used in another one, e.g. the screen name. But these seem not to
be as critical as to avoid using an outdated e-mail address. Such properties could
be cached for a limited time before retrieving them again from the application
storing this property.

5.7 Race conditions with refresh token rotation

As suggested in subsection 10.4 of RFC 6749,41 refresh token rotation is employed
to provide better security properties (e.g. in case of exposed refresh tokens and
client certificates, or in case of the existence of a single compromized certificate
authority which would render authentication of dynamic clients insecure).

Unfortunately, RFC 6749 does not specify how old refresh tokens are invali-
dated. Section 6 of RFC 6749 only says that66

• the authorization server MAY issue a new refresh token, in which case

• the client MUST discard the old refresh token and replace it with the new
refresh token, and

65Note that when exchanging a refresh token for an access token after the user has been
logged out, an UWUM client must also explicitly request the ”* detached” scope(s) it needs,
e.g. “notify email detached” using the scope parameter of the /api/1/token endpoint.

66https://tools.ietf.org/html/rfc6749#section-6

22/27

https://tools.ietf.org/html/rfc6749#section-6


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

• the authorization server MAY revoke the old refresh token.

Always revoking the old refresh token after transmission can have a bad effect
on system stability, considering that responses might be interrupted. Further-
more, multiple backends of an UWUM client could simultaneously access the
token endpoint. Such legit accesses by two legit backends of the same client
would need to be distinguished from accesses by a legit client and a malicious
third party who obtained a copy of a refresh token.

Subsection 2.15 explains the mechanisms employed by the UWUM server to
mitigate the risk of refresh token abuse while solving the problems stated above.

5.8 Creating a set of suitable access token scopes

A useful set of access token scopes7 is a vital aspect of privilege separation. From
a security point of view, scopes should be as fine-graded as possible, particularly
there should be different scopes for different applications (e.g. an application
that wishes to rate user contributions in application X does not need an access
token that allows to rate user contributions in application Y). Extensibility, on the
other hand, would be complicated if access token scopes always refer to a single
application (i.e. a single resource server in this context). Furthermore, it is a goal
that the WeGovNow platform looks and feels like a single integrated application.
When users grant access scopes to third party clients, such application-based
scopes would be difficult to understand for the user, which by itself can have bad
influence on the overall system security.

We therefore decided to provide a set of generic access token scopes as listed
in subsection 2.6. For future extensions, see footnote 20.

5.9 Misconceptions regarding scopes vs. user privileges

Scopes must not be mistaken for user privileges. I.e. a scope does not grant a
privilege to a user; it just means an application can trigger an action within the
scope if the user is authorized to perform the action. For example, an application
needs the scope “vote” to cast a vote on behalf of the user but casting a vote
will only work if the user has the necessary voting privileges.

Programmers of UWUM clients must keep these differences in mind and
execute an action only if both the scope and the users privileges are sufficent for
the respective action.

23/27



UWUM Work Report LiquidFeedback / FlexiGuided GmbH

5.10 JavaScript integration and privilege separation

Dynamically sharing JavaScript code between UWUM clients or between the
UWUM server and an UWUM client violates privilege separation because it would
enable one component to execute code in the security context of another origin.
For example, one application ‘A’ could send a harmful JavaScript to be included
in a web page returned by another application ‘B’ which then discloses the session
cookie for application ‘B’ to application ‘A’.

For this reason, the common navigation bar as returned by the navigation
endpoint (see subsection 3.1) currently does not include any JavaScript code.
UWUM clients may therefore even consider to sanitize the returned HTML code
in such a way that any JavaScript is removed or rejected.

Interface design decisions, however, might suggest to use JavaScript for the
navigation bar. Material design, for example, requires popup-menus to be ani-
mated, which cannot be done with CSS alone. Another reason for JavaScript
might be dynamic modifications of the navigation bar (e.g. collapsing the nav-
igation bar to a menu icon) depending on the screen size or the device of the
user. Also other integration techniques might suggest the use of JavaScript.

An alternative to dynamically provided JavaScripts by the UWUM server
would be a common library to be included locally by each WeGovNow component.
Whenever this library is updated, administrators of each component can look
over it before incorporating it. While this approach provides proper privilege
separation, its downside would be the administrative overhead.

At least in regard to the navigation bar, it would eventually need to be decided
whether

• there will be no JavaScript used by the navigation bar,

• the UWUM server will dynamically return JavaScript code for the naviga-
tion bar, or

• each WeGovNow component needs to include a pre-distributed JavaScript.

5.11 Logout through navigation bar

The common WeGovNow navigation bar (as returned by the “navigation”
endpoint, see subsection 3.1) should also include a possibility to logout. Due to
protection against cross-site-request-forgery (CSRF) and because the navigation
bar will be included in responses from different web servers (different “origins”),
a simple logout link does not work. Subsection 2.12.2 deals with different ap-
proaches to this problem.

24/27



UWUM Work Report LiquidFeedback / FlexiGuided GmbH

5.12 Collapsing navigation bar and application menu

In case of mobile devices, it may be desirable to collapse the navigation bar to
a single menu icon displayed in the corner of the screen. Despite the technical
problems in regard to JavaScript (which are discussed in subsection 5.10), there
is also a challenge in regard to a potentially existent second menu bar which is
provided by the particular application currently selected.

It could be difficult for the user if two menu icons are being displayed (i.e. a
meta-menu, which covers the entries of the navigation bar, and an application
specific menu). A potential solution could be to combine both menus into a single
one. In this case, however, the considerations of subsection 5.10 still apply.

5.13 UWUM clients without user interface

In addition to UWUM clients having a user interface, there are also WeGovNow
applications thinkable which do not have any (end-)user interface. This includes
both meta-API providers as well as other service components. In the context of
WeGovNow, one meta-API provider could be OntoMap.

The current UWUM specification enables the development of meta-APIs be-
cause access tokens are not bound to a particular UWUM client and can be
downgraded in regard to their access token scope (of which the latter is impor-
tant for security, see subsection 2.14). Thus, a meta-API can simply require its
callers to provide a valid access token which then can either be used directly or
downgraded for further requests performed by the meta-API provider to other
resource servers.

Nonetheless, the mechanisms described in this work report still require priv-
ileges that are bound to a particular user. For UWUM clients requiring access
privileges that are not tied to a particular user (e.g. clients which aggregate data
of all users and publish that information), the Client Credentials Grant67 should
be implemented.

5.14 Client authentication for resource servers

While UWUM enables (a) its clients to authenticate users and (b) resource servers
to verify user authorization (both explained in section 2), it does not enable
resource servers to authenticate clients. Such client authentication might be
required by applications that want to establish a trusted channel to another
application independently of user authorization.68

67https://tools.ietf.org/html/rfc6749#section-4.4
68An example could be OntoMap logging actions executed at other applications (which are

then reported to OntoMap by the respective application with client authentication enabled).

25/27

https://tools.ietf.org/html/rfc6749#section-4.4


UWUM Work Report LiquidFeedback / FlexiGuided GmbH

Unfortunately, neither OAuth 2.0 nor UWUM enable applications to verify
the identity of another application. Even if OAuth 2.0 uses client authentication
for a variety of reasons69 for the authorization endpoint26, it doesn’t provide such
an authentication method to other applications. Extending the OAuth 2.0 work
flow in this matter (e.g. by returning the client id when an access token is
presented to the validation endpoint70) would rise some issues:

• Tieing an access token (a bearer token2 in case of UWUM) to a particular
client does not make sense in case of applications that behave both as
an OAuth 2.0 resource server and as a client (e.g. meta-API providers
or applications which provide an API and have to perform further API
calls to complete a requested action). Also, client impersonation would
be possible. To give an example: if a received access token is tied to a
particular client A, and if application A uses this access token to perform an
action at application B, then application B would be able to impersonate
application A. Furthermore, application B couldn’t use the access token to
authenticate as application B when performing further requests at the API
of another application C.

• Using a custom scope to identify the origin of a request (e.g. a scope
“I am appX”) would also enable client impersonation (e.g. any applica-
tion who receives an access token with the scope “I am appX” could
then impersonate application X). An alternative could be to use scopes
that reflect better the particular action to be performed, e.g. a scope
“write appXs log at appY”. It is self-evident that this would increase
the number of scopes drastically (possibly quadradically), which, in turn,
might create a maintenance/configuration mess. Other than that, there
is another problem with using scopes for client authentication: following
RFC 6750, there can only be one bearer token per request.2 If a client
needs to use a received access token for an API call at another compo-
nent, then this access token could not be used to authenticate that client
because it won’t have the necessary scope. One possible solution could
be to allow adding scopes to an existing access token or extend RFC 6750
in such a way that multiple access tokens could be used per request. All
those solutions, however, go far beyond OAuth 2.0 and would require extra
implementation work for all consortium partners. In the end, the created
solution wouldn’t be OAuth 2.0 anymore.

69See beginning of subsection 2.4.2 of this report.
70See subsection2.8 for an explanation of the validation endpoint.

26/27



UWUM Work Report LiquidFeedback / FlexiGuided GmbH

The straight-forward way of authenticating clients is to use the existing mech-
anism already employed by all UWUM clients: TLS client-side certificates. This,
however, requires TLS client certificate checking by each resource server that
needs to authenticate other clients.

© 2016 FlexiGuided GmbH, Berlin

27/27



This project has received funding from the European Union's
Horizon 2020 research and innovation programme under
grant agreement No 693514.


